An Adaptive Color Image Segmentation
نویسنده
چکیده
A novel Adaptive Color Image Segmentation (ACIS) System for color image segmentation is presented. The proposed ACIS system uses a neural network with architecture similar to the multilayer perceptron (MLP) network. The main difference is that neurons here uses a multisigmoid activation function. The multisigmoid function is the key for segmentation. The number of steps i.e. thresholds in the multisigmoid function are dependant on the number of clusters in the image. The threshold values for detecting the clusters and their labels are found automatically from the first order derivative of histograms of saturation and intensity in the HSV color space. Here, the main use of neural network is to detect the number of objects automatically from an image. The advantage of this method is that no a priori knowledge is required to segment the color image. ACIS label the objects with their mean colors. The algorithm is found to be reliable and works satisfactorily on different kinds of color images. Experimental results show that the performance of ACIS is robust on noisy images also.
منابع مشابه
Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملکاهش رنگ تصاویر با شبکههای عصبی خودسامانده چندمرحلهای و ویژگیهای افزونه
Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohene...
متن کاملPerformance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation
Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...
متن کاملAdaptive image segmentation based on color and texture
We propose an image segmentation algorithm that is based on spatially adaptive color and texture features. The features are first developed independently, and then combined to obtain an overall segmentation. Texture feature estimation requires a finite neighborhood which limits the spatial resolution of texture segmentation, while color segmentation provides accurate and precise edge localizati...
متن کاملModified CLPSO-based fuzzy classification System: Color Image Segmentation
Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorr...
متن کاملColor Image Segmentation using Adaptive Spatial Gaussian Mixture Model
An adaptive spatial Gaussian mixture model is proposed for clustering based color image segmentation. A new clustering objective function which incorporates the spatial information is introduced in the Bayesian framework. The weighting parameter for controlling the importance of spatial information is made adaptive to the image content to augment the smoothness towards piecewisehomogeneous regi...
متن کامل