Coactivated Clique Based Multisource Overlapping Brain Subnetwork Extraction

نویسندگان

  • Chendi Wang
  • Rafeef Abugharbieh
چکیده

Subnetwork extraction using community detection methods is commonly used to study the brain’s modular structure. Recent studies indicated that certain brain regions are known to interact with multiple subnetworks. However, most existing methods are mainly for non-overlapping subnetwork extraction. In this paper, we present an approach for overlapping brain subnetwork extraction using cliques, which we defined as co-activated node groups performing multiple tasks. We proposed a multisource subnetwork extraction approach based on the co-activated clique, which (1) uses task co-activation and task connectivity strength information for clique identification, (2) automatically detects cliques of different sizes having more neuroscientific justifications, and (3) shares the subnetwork membership, derived from a fusion of rest and task data, among the nodes within a clique for overlapping subnetwork extraction. On real data, compared to the commonly used overlapping community detection techniques, we showed that our approach improved subnetwork extraction in terms of group-level and subject-wise reproducibility. We also showed that our multisource approach identified subnetwork overlaps within brain regions that matched well with hubs defined using functional and anatomical information, which enables us to study the interactions between the subnetworks and how hubs play their role in information flow across different subnetworks. We further demonstrated that the assignments of interacting/individual nodes using our approach correspond with the posterior probability derived independently from our multimodal random walker based approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypergraph based Subnetwork Extraction using Fusion of Task and Rest Functional Connectivity

Functional subnetwork extraction is commonly used to explore the brain’s modular structure. However, reliable subnetwork extraction from functional magnetic resonance imaging (fMRI) data remains challenging due to the pronounced noise in neuroimaging data. In this paper, we proposed a high order relation informed approach based on hypergraph to combine the information from multi-task data and r...

متن کامل

Modularity Reinforcement for Improving Brain Subnetwork Extraction

Functional subnetwork extraction is commonly employed to study the brain’s modular structure. However, reliable extraction from functional magnetic resonance imaging (fMRI) data remains challenging. As representations of brain networks, brain graph estimates are typically noisy due to the pronounced noise in fMRI data. Also, confounds, such as region size bias, motion artifacts, and signal drop...

متن کامل

Multimodal Brain Subnetwork Extraction Using Provincial Hub Guided Random Walks

Community detection methods have been widely used for studying the modular structure of the brain. However, few of these methods exploit the intrinsic properties of brain networks other than modularity to tackle the pronounced noise in neuroimaging data. We propose a random walker (RW) based approach that reflects how regions of a brain subnetwork tend to be inter-linked by a provincial hub. By...

متن کامل

Overlapping Replicator Dynamics for Functional Subnetwork Identification

Functional magnetic resonance imaging (fMRI) has been widely used for inferring brain regions that tend to work in tandem and grouping them into subnetworks. Despite that certain brain regions are known to interact with multiple subnetworks, few existing techniques support identification of subnetworks with overlaps. To address this limitation, we propose a novel approach based on replicator dy...

متن کامل

Coupled Stable Overlapping Replicator Dynamics for Multimodal Brain Subnetwork Identification

Combining imaging modalities to synthesize their inherent strengths provides a promising means for improving brain subnetwork identification. We propose a multimodal integration technique based on a sex-differentiated formulation of replicator dynamics for identifying subnetworks of brain regions that exhibit high inter-connectivity both functionally and structurally. Our method has a number of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.09589  شماره 

صفحات  -

تاریخ انتشار 2018