Experimental and mathematical approaches to modeling plant metabolic networks.
نویسندگان
چکیده
To support their sessile and autotrophic lifestyle higher plants have evolved elaborate networks of metabolic pathways. Dynamic changes in these metabolic networks are among the developmental forces underlying the functional differentiation of organs, tissues and specialized cell types. They are also important in the various interactions of a plant with its environment. Further complexity is added by the extensive compartmentation of the various interconnected metabolic pathways in plants. Thus, although being used widely for assessing the control of metabolic flux in microbes, mathematical modeling approaches that require steady-state approximations are of limited utility for understanding complex plant metabolic networks. However, considerable progress has been made when manageable metabolic subsystems were studied. In this article, we will explain in general terms and using simple examples the concepts underlying stoichiometric modeling (metabolic flux analysis and metabolic pathway analysis) and kinetic approaches to modeling (including metabolic control analysis as a special case). Selected studies demonstrating the prospects of these approaches, or combinations of them, for understanding the control of flux through particular plant pathways are discussed. We argue that iterative cycles of (dry) mathematical modeling and (wet) laboratory testing will become increasingly important for simulating the distribution of flux in plant metabolic networks and deriving rational experimental designs for metabolic engineering efforts.
منابع مشابه
Update on Plant Metabolic Pathways Simulating Plant Metabolic Pathways with Enzyme-Kinetic Models
The complexity of metabolic networks and their regulation renders an intuitive analysis of these biological systems a difficult task. Mathematical modeling approaches help to deal with this complexity, making them an important tool for metabolic engineering. Different methods were developed, ranging from basic stoichiometric models up to fine-grained kinetic models. Kinetic modeling is the most...
متن کاملPlant metabolic modeling: achieving new insight into metabolism and metabolic engineering.
Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an...
متن کاملA workflow for mathematical modeling of subcellular metabolic pathways in leaf metabolism of Arabidopsis thaliana
During the last decade genome sequencing has experienced a rapid technological development resulting in numerous sequencing projects and applications in life science. In plant molecular biology, the availability of sequence data on whole genomes has enabled the reconstruction of metabolic networks. Enzymatic reactions are predicted by the sequence information. Pathways arise due to the particip...
متن کاملMathematical Modeling of Plant Metabolism―From Reconstruction to Prediction
Due to their sessile lifestyle, plants are exposed to a large set of environmental cues. In order to cope with changes in environmental conditions a multitude of complex strategies to regulate metabolism has evolved. The complexity is mainly attributed to interlaced regulatory circuits between genes, proteins and metabolites and a high degree of cellular compartmentalization. The genetic model ...
متن کاملMathematical modeling of plant metabolic pathways.
The understanding of the control of metabolic flux in plants requires integrated mathematical formulations of gene and protein expression, enzyme kinetics, and developmental biology. Plants have a large number of metabolically active compartments, and non-steady-state conditions are frequently encountered. Consequently steady-state metabolic flux balance and isotopic flux balance modeling appro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Phytochemistry
دوره 68 16-18 شماره
صفحات -
تاریخ انتشار 2007