Improving Image Categorization by Using Multiple Instance Learning with Spatial Relation
نویسندگان
چکیده
Image categorization is a challenging problem when a label is provided for the entire training image only instead of the object region. To eliminate labeling ambiguity, image categorization and object localization should be performed simultaneously. Discriminative Multiple Instance Learning (MIL) can be used for this task by regarding each image as a bag and sub-windows in the image as instances. Learning a discriminative MI classifier requires an iterative solution. In each round, positive sub-windows for the next round should be selected. With standard approaches, selecting only one positive sub-window per positive bag may limit the search space for global optimum; meanwhile, selecting all temporal positive sub-windows may add noise into learning. We select a subset of sub-windows per positive bag to avoid those limitations. Spatial relations between sub-windows are used as clues for selection. Experimental results demonstrate that our approach outperforms previous discriminative MIL approaches and standard categorization approaches.
منابع مشابه
Instance-level Semisupervised Multiple Instance Learning
Multiple instance learning (MIL) is a branch of machine learning that attempts to learn information from bags of instances. Many real-world applications such as localized content-based image retrieval and text categorization can be viewed as MIL problems. In this paper, we propose a new graph-based semi-supervised learning approach for multiple instance learning. By defining an instance-level g...
متن کاملRO-SVM: Support Vector Machine with Reject Option for Image Categorization
When applying Multiple Instance Learning (MIL) for image categorization, an image is treated as a bag containing a number of instances, each representing a region inside the image. The categorization of this image is determined by the labels of these instances, which are not specified in the training data-set. Hence, these instance labels are needed to be estimated together with the classifier....
متن کاملImage Categorization by Learning and Reasoning with Regions
Designing computer programs to automatically categorize images using low-level features is a challenging research topic in computer vision. In this paper, we present a new learning technique, which extends Multiple-Instance Learning (MIL), and its application to the problem of region-based image categorization. Images are viewed as bags, each of which contains a number of instances correspondin...
متن کاملRegion-Based Image Classification with a Latent SVM Model
Image classification is a challenging problem due to intra-class appearance variation, background clutter, occlusion, and photometric variability. Current state-ofthe-art methods do not explicitly handle background clutter, but rely on global image representations, such as bag-of-word (BoW) models. Multiple-instance learning has been used to explicitly deal with clutter, classifying an image po...
متن کاملMultiple-Instance Active Learning for Image Categorization
Both multiple-instance learning and active learning are widely employed in image categorization, but generally they are applied separately. This paper studies the integration of these two methods. Different from typical active learning approaches, the sample selection strategy in multiple-instance active learning needs to handle samples in different granularities, that is, instance/region and b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011