Synergistic Effects of GhSOD1 and GhCAT1 Overexpression in Cotton Chloroplasts on Enhancing Tolerance to Methyl Viologen and Salt Stresses

نویسندگان

  • Xiaoli Luo
  • Jiahe Wu
  • Yuanbao Li
  • Zhirun Nan
  • Xing Guo
  • Yixue Wang
  • Anhong Zhang
  • Zhian Wang
  • Guixian Xia
  • Yingchuan Tian
چکیده

In plants, CuZn superoxide dismutase (CuZnSOD, EC l.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and catalase (CAT, EC l.11.1.6) are important scavengers of reactive oxygen species (ROS) to protect the cell from damage. In the present study, we isolated three homologous genes (GhSOD1, GhAPX1, and GhCAT1) from Gossypium hirsutum. Overexpressing cassettes containing chimeric GhSOD1, GhAPX1, or GhCAT1 were introduced into cotton plants by Agrobacterium transformation, and overexpressed products of these genes were transported into the chloroplasts by transit peptide, as expected. The five types of transgenic cotton plants that overexpressed GhSOD1, GhAPX1, GhCAT1, GhSOD1 and GhAPX1 stack (SAT), and GhSOD1 and GhCAT1 stack (SCT) were developed. Analyses in the greenhouse showed that the transgenic plants had higher tolerance to methyl viologen (MV) and salinity than WT plants. Interestingly, SCT plants suffered no damage under stress conditions. Based on analyses of enzyme activities, electrolyte leakage, chlorophyll content, photochemical yield (Fv/Fm), and biomass accumulation under stresses, the SCT plants that simultaneously overexpressed GhSOD1 and GhCAT1 appeared to benefit from synergistic effects of two genes and exhibited the highest tolerance to MV and salt stress among the transgenic lines, while the SAT plants simultaneously overexpressing GhSOD1 and GhAPX1 did not. In addition, transgenic plants overexpressing antioxidant enzymes in their chloroplasts had higher tolerance to salt stress than those expressing the genes in their cytoplasms, although overall enzyme activities were almost the same. Therefore, the synergistic effects of GhSOD1 and GhCAT1 in chloroplasts provide a new strategy for enhancing stress tolerance to avoid yield loss.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance.

One approach to understanding the Reactive Oxygen Species (ROS)-scavenging systems in plant stress tolerance is to manipulate the levels of antioxidant enzyme activities. In this study, we expressed in the chloroplast three such enzymes: dehydroascorbate reductase (DHAR), glutathione-S-transferase (GST) and glutathione reductase (GR). Homoplasmic chloroplast transformants containing either DHAR...

متن کامل

A Rice CPYC-Type Glutaredoxin OsGRX20 in Protection against Bacterial Blight, Methyl Viologen and Salt Stresses

Glutaredoxins (GRXs) belong to the antioxidants involved in the cellular stress responses. In spite of the identification 48 GRX genes in rice genomes, the biological functions of most of them remain unknown. Especially, the biological roles of members of GRX family in disease resistance are still lacking. Our proteomic analysis found that OsGRX20 increased by 2.7-fold after infection by bacter...

متن کامل

GhSOS1, a plasma membrane Na+/H+ antiporter gene from upland cotton, enhances salt tolerance in transgenic Arabidopsis thaliana

Upland cotton (Gossypium hirsutum L.), an important source of natural fiber, can tolerate relatively high salinity and drought stresses. In the present study, a plasma membrane Na+/H+ antiporter gene, GhSOS1, was cloned from a salt-tolerant genotype of G. hirsutum, Zhong 9807. The expression level of GhSOS1 in cotton roots was significantly upregulated in the presence of high concentrations of ...

متن کامل

Enhanced Ascorbic Acid Accumulation through Overexpression of Dehydroascorbate Reductase Confers Tolerance to Methyl Viologen and Salt Stresses in Tomato

As an important antioxidant for plants and humans, L-ascorbic acid (AsA, vitamin C) can scavenge reactive oxygen species (ROS) and can be regenerated from its oxidized form in a reaction catalyzed by dehydroascorbate reductase (DHAR). To analyse the effect of overexpressing DHAR on tomato (Solanum lycopersicum), an expression vector containing potato cytosolic DHAR (DHAR1) or chloroplastic DHAR...

متن کامل

Overexpression of Rice NAC Gene SNAC1 Improves Drought and Salt Tolerance by Enhancing Root Development and Reducing Transpiration Rate in Transgenic Cotton

The SNAC1 gene belongs to the stress-related NAC superfamily of transcription factors. It was identified from rice and overexpressed in cotton cultivar YZ1 by Agrobacterium tumefaciens-mediated transformation. SNAC1-overexpressing cotton plants showed more vigorous growth, especially in terms of root development, than the wild-type plants in the presence of 250 mM NaCl under hydroponic growth c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013