WOOster: A Map-Reduce based Platform for Graph Mining
نویسنده
چکیده
Large scale graphs containing O(billion) of vertices are becoming increasingly common in various applications. With graphs of such proportion, efficient querying infrastructure becomes crucial. In this paper, we propose WOOster a hosted querying infrastructure designed specifically for the large graphs. We make two key contributions: a) Design of the WOOster framework. b)Scalable map-reduce algorithms for two popular graph queries: sub-graph match and reachability. Our experiments show that the proposed map-reduce algorithms scale well with large synthetic datasets.
منابع مشابه
Graph-based Visual Saliency Model using Background Color
Visual saliency is a cognitive psychology concept that makes some stimuli of a scene stand out relative to their neighbors and attract our attention. Computing visual saliency is a topic of recent interest. Here, we propose a graph-based method for saliency detection, which contains three stages: pre-processing, initial saliency detection and final saliency detection. The initial saliency map i...
متن کاملMarket Basket Analysis Algorithm with Map/Reduce of Cloud Computing
Map/Reduce approach has been popular in order to compute huge volumes of data since Google implemented its platform on Google Distributed File Systems (GFS) and then Amazon Web Service (AWS) provides its services with Apache Hadoop platform. Map/Reduce motivates to redesign and convert the existing sequential algorithms to Map/Reduce algorithms for big data so that the paper presents Market Bas...
متن کاملRegional simulation and landslide risk prediction based on bivariate logistic regression (A case study: Pahne Kola watershed in north of Iran)
This study aims to assess landslide susceptibility in Pahne Kola watershed located in the south of Sari, based on bivariate logistic regression. For this purpose, the distribution map of the area’s landslides was firstly prepared in ArcGIS software. Eight effective factors on landslide event including elevation, slope, slope aspect, rainfall, land use, distance from the road, soil and geology w...
متن کاملMarket Basket Analysis Algorithm on Map/Reduce in AWS EC2
As the web, social networking, and smartphone application have been popular, the data has grown drastically everyday. Thus, such data is called Big Data. Google met Big Data earlier than others and recognized the importance of the storage and computation of Big Data. Thus, Google implemented its parallel computing platform with Map/Reduce approach on Google Distributed File Systems (GFS) in ord...
متن کاملHeterogeneous Multi core processors for improving the efficiency of Market basket analysis algorithm in data mining
-Heterogeneous multi core processors can offer diverse computing capabilities. The efficiency of Market Basket Analysis Algorithm can be improved with heterogeneous multi core processors. Market basket analysis algorithm utilises apriori algorithm and is one of the popular data mining algorithms which can utilise Map/Reduce framework to perform analysis. The algorithm generates association rule...
متن کامل