EEG filtering based on blind source separation (BSS) for early detection of Alzheimer's disease.

نویسندگان

  • Andrzej Cichocki
  • Sergei L Shishkin
  • Toshimitsu Musha
  • Zbigniew Leonowicz
  • Takashi Asada
  • Takayoshi Kurachi
چکیده

OBJECTIVE Development of an EEG preprocessing technique for improvement of detection of Alzheimer's disease (AD). The technique is based on filtering of EEG data using blind source separation (BSS) and projection of components which are possibly sensitive to cortical neuronal impairment found in early stages of AD. METHODS Artifact-free 20s intervals of raw resting EEG recordings from 22 patients with Mild Cognitive Impairment (MCI) who later proceeded to AD and 38 age-matched normal controls were decomposed into spatio-temporally decorrelated components using BSS algorithm 'AMUSE'. Filtered EEG was obtained by back projection of components with the highest linear predictability. Relative power of filtered data in delta, theta, alpha 1, alpha 2, beta 1, and beta 2 bands were processed with Linear Discriminant Analysis (LDA). RESULTS Preprocessing improved the percentage of correctly classified patients and controls computed with jack-knifing cross-validation from 59 to 73% and from 76 to 84%, correspondingly. CONCLUSIONS The proposed approach can significantly improve the sensitivity and specificity of EEG based diagnosis. SIGNIFICANCE Filtering based on BSS can improve the performance of the existing EEG approaches to early diagnosis of Alzheimer's disease. It may also have potential for improvement of EEG classification in other clinical areas or fundamental research. The developed method is quite general and flexible, allowing for various extensions and improvements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EEG filtering based on blind source separation (BSS) improves detection of Alzheimer disease

Objective: Improvement of detection of Alzheimer disease (AD) by filtering of EEG data using blind source separation (BSS) and projection of components which are possibly sensitive to cortical neuronal impairment found in early stages of AD. Method: Artifact-free 20 s intervals of raw resting EEG recordings from 22 mild AD patients and 38 age-matched controls were decomposed into spatio-tempora...

متن کامل

Generalized Component Analysis and Blind Source Separation Methods for Analyzing Multichannel Brain Signals

Blind source separation (BSS) and related methods, e.g., independent component analysis (ICA) are generally based on a wide class of unsupervised learning algorithms and they found potential applications in many areas from engineering to neuroscience. The recent trends in blind source separation and generalized component analysis (GCA) is to consider problems in the framework of matrix factoriz...

متن کامل

Wavelet Enhanced CCA for Minimization of Ocular and Muscle Artifacts in EEG

Electroencephalogram (EEG) recordings are often contaminated with ocular and muscle artifacts. In this paper, the canonical correlation analysis (CCA) is used as blind source separation (BSS) technique (BSS-CCA) to decompose the artifact contaminated EEG into component signals. We combine the BSSCCA technique with wavelet filtering approach for minimizing both ocular and muscle artifacts simult...

متن کامل

A Combined Wavelet Packet-blind Source Separation Approach for Identification and Removal of Muscle Artifacts from Electroencephalogram

Electromyogram (EMG) induced electrical activity is an undesirable interference in cerebral electroencephalogram (EEG) data. We propose an efficient algorithm for automatic detection and removal of EMG artifact, while preserving most of the true cerebral activity in the EEG. First, the EEG data are decomposed into independent components (IC) using canonical correlation based blind source separa...

متن کامل

Calculation of Leakage in Water Supply Network Based on Blind Source Separation Theory

The economic and environmental losses due to serious leakage in the urban water supply network have increased the effort to control the water leakage. However, current methods for leakage estimation are inaccurate leading to the development of ineffective leakage controls. Therefore, this study proposes a method based on the blind source separation theory (BSS) to calculate the leakage of water...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology

دوره 116 3  شماره 

صفحات  -

تاریخ انتشار 2005