Regulation of Kir channels in bovine retinal pigment epithelial cells by phosphatidylinositol 4,5-bisphosphate.
نویسندگان
چکیده
The inwardly rectifying K+ (Kir) current in mammalian retinal pigment epithelial (RPE) cells, which is largely mediated by Kir7.1 channels, is stable in cells dialyzed with MgATP but runs down when intracellular ATP is depleted. A potential mechanism for this rundown is a decrease in phosphatidylinositol 4,5-bisphosphate (PIP2) regeneration by ATP-dependent lipid kinases. Here, we used the whole cell voltage-clamp technique to investigate the membrane PIP2 dependence of Kir channels in isolated bovine RPE cells. When RPE cells were dialyzed with ATP-free solution containing PIP2 (25-50 microM), rundown persisted but was markedly reduced. Removal of Mg2+ from the pipette solution also slowed rundown, indicating that elevated intracellular Mg2+ concentration contributes to rundown. Cell dialysis with the PIP2 scavenger neomycin in MgATP solution diminished Kir current in a voltage-dependent manner, suggesting that it acted at least in part by blocking the Kir channel. Kir current in MgATP-loaded cells was partially inhibited by bath application of quercetin (100 microM), phenylarsine oxide (100 microM), or wortmannin (50 microM), inhibitors of phosphatidylinositol (PI) kinases, and was completely inhibited by cell dialysis with 2 mM adenosine, a PI4 kinase inhibitor. Both LY-294002 (100 microM), an inhibitor of PI3 kinases, and its inactive analog LY-303511 (100 microM) rapidly and reversibly inhibited Kir current, suggesting that these compounds act as direct channel blockers. We conclude that the activity of Kir channels in the RPE is critically dependent on the regeneration of membrane PIP2 by PI4 kinases and that this may explain the dependence of these channels on hydrolyzable ATP.
منابع مشابه
Early LPS-induced ERK activation in retinal pigment epithelium cells is dependent on PIP 2 -PLC.
This article presents additional data regarding the study "The phospholipase D pathway mediates the inflammatory response of the retinal pigment epithelium" [1]. The new data presented here show that short exposure of RPE cells to lipopolysaccharide (LPS) induces an early and transient activation of the extracellular signal-regulated kinase (ERK1/2). This early ERK1/2 activation is dependent on...
متن کاملATP-dependent regulation of inwardly rectifying K+ current in bovine retinal pigment epithelial cells.
Inwardly rectifying K+ current ( I Kir) in freshly isolated bovine retinal pigment epithelial (RPE) cells was studied in the whole cell recording configuration of the patch-clamp technique. When cells were dialyzed with pipette solution containing no ATP, I Kir ran down completely in <10 min [half time ( t 1/2) = 1.9 min]. In contrast, dialysis with 2 mM ATP sustained I Kir for 10 min or more. ...
متن کاملHow Highly Charged Anionic Lipids Bind and Regulate Ion Channels
The modulation of channel activity by direct interaction with membrane lipids is now an emerging theme in ion channel biology. In particular, phosphoinositides such as phosphatidylinositol 4,5-bisphosphate (PIP 2) are known to regulate the activity of most major classes of ion channel, as well as a number of other membrane transport proteins. The regulation of inwardly rectifying (Kir) potassiu...
متن کاملRegulation of inwardly rectifying K+ channels in retinal pigment epithelial cells by intracellular pH.
Inwardly rectifying K+ (Kir) channels in the apical membrane of the retinal pigment epithelium (RPE) play a key role in the transport of K+ into and out of the subretinal space (SRS), a small extracellular compartment surrounding photoreceptor outer segments. Recent molecular and functional evidence indicates that these channels comprise Kir7.1 channel subunits. The purpose of this study was to...
متن کاملAlterations in Conserved Kir Channel-PIP2 Interactions Underlie Channelopathies
Inwardly rectifying K(+) (Kir) channels are important regulators of resting membrane potential and cell excitability. The activity of Kir channels is critically dependent on the integrity of channel interactions with phosphatidylinositol 4,5-bisphosphate (PIP(2)). Here we identify and characterize channel-PIP(2) interactions that are conserved among Kir family members. We find basic residues th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 297 4 شماره
صفحات -
تاریخ انتشار 2009