Noncommutative Harmonic Analysis on Semigroup and Ultracontractivity

نویسنده

  • XIAO XIONG
چکیده

We extend some classical results of Cowling and Meda to the noncommutative setting. Let (Tt)t>0 be a symmetric contraction semigroup on a noncommutative space Lp(M), and let the functions φ and ψ be regularly related. We prove that the semigroup (Tt)t>0 is φ-ultracontractive, i.e. ‖Ttx‖∞ ≤ Cφ(t)‖x‖1 for all x ∈ L1(M) and t > 0 if and only if its infinitesimal generator L has the Sobolev embedding properties: ‖ψ(L)x‖q ≤ C′‖x‖p for all x ∈ Lp(M), where 1 < p < q < ∞ and α = 1 p − 1 q . We establish some noncommutative spectral multiplier theorems and maximal function estimates for generator of φ-ultracontractive semigroup. We also show the equivalence between φ-ultracontractivity and logarithmic Sobolev inequality for some special φ. Finally, we gives some results on local ultracontractivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrinsic Ultracontractivity for Schrödinger Operators Based on Fractional Laplacians

We study the Feynman-Kac semigroup generated by the Schrödinger operator based on the fractional Laplacian −(−∆)−q in R, for q ≥ 0, α ∈ (0, 2). We obtain sharp estimates of the first eigenfunction φ1 of the Schrödinger operator and conditions equivalent to intrinsic ultracontractivity of the Feynman-Kac semigroup. For potentials q such that lim|x|→∞ q(x) = ∞ and comparable on unit balls we obta...

متن کامل

Stability of additive functional equation on discrete quantum semigroups

We construct  a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...

متن کامل

Intrinsic Ultracontractivity for Non-symmetric Lévy Processes

Recently in [17, 18], we extended the concept of intrinsic ultracontractivity to nonsymmetric semigroups and proved that for a large class of non-symmetric diffusions Z with measure-valued drift and potential, the semigroup of ZD (the process obtained by killing Z upon exiting D) in a bounded domain is intrinsic ultracontractive under very mild assumptions. In this paper, we study the intrinsic...

متن کامل

On Equivalence of Super Log Sobolev and Nash Type Inequalities

We prove the equivalence of Nash type and super log Sobolev inequalities for Dirichlet forms. We also show that both inequalities are equivalent to Orlicz-Sobolev type inequalities. No ultracontractivity of the semigroup is assumed. It is known that there is no equivalence between super log Sobolev or Nash type inequalities and ultracontractivity. We discuss Davies-Simon’s counterexample as bor...

متن کامل

Pointwise Eigenfunction Estimates and Intrinsic Ultracontractivity-type Properties of Feynman-kac Semigroups for a Class of Lévy Processes

We introduce a class of Lévy processes subject to specific regularity conditions, and consider their Feynman-Kac semigroups given under a Kato-class potential. Using new techniques, first we analyze the rate of decay of eigenfunctions at infinity. We prove bounds on λ-subaveraging functions, from which we derive two-sided sharp pointwise estimates on the ground state, and obtain upper bounds on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016