Paracrine upregulation of VEGF receptor mRNA in endothelial cells by hypoxia-exposed Hep G2 cells.
نویسندگان
چکیده
Although vascular endothelial growth factor (VEGF) plays a role in the growth of hypervascular tumors, mechanisms for paracrine regulation of its receptor expression on vascular endothelial cells remain unknown. This study aimed to investigate whether VEGF released from hypoxia-exposed Hep G2 cells alters expression of the two distinct receptors, kinase insert domain-containing receptor (KDR) and fms-like tyrosine kinase 1 ( flt-1), in human umbilical venous endothelial cells (HUVEC). Hep G2 cells were cultured in 20% or 1% O2 for 16 h to examine induction of VEGF mRNA and its protein expression. Conditioned medium from Hep G2 cells (CM) was applied to HUVEC under normoxic conditions, and expression of mRNA for the VEGF receptors was determined by RT-PCR. In response to the hypoxic challenge, Hep G2 cells upregulated VEGF mRNA and the release of VEGF. Hypoxia-CM preferentially stimulated the mRNA expression of flt-1 but not that of KDR in HUVEC. When the VEGF release from hypoxia-exposed Hep G2 cells was blocked by its antisense oligodeoxynucleotide, the endothelial flt-1 mRNA upregulation elicited by the hypoxia-CM was still maintained. These results suggest that hypoxia-exposed Hep G2 cells not only produce VEGF but also evolve paracrine induction of flt-1 through VEGF-independent mechanisms.
منابع مشابه
Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression.
Vascular endothelial growth factor (VEGF)/vascular permeability factor (VPF), an endothelial cell (EC)-specific mitogen, stimulates angiogenesis in vivo, particularly in ischemic regions. VEGF/VPF expression by cells of hypoxic tissues coincides with expression of its two receptors, KDR and flt-1, by ECs in the same tissues. We investigated whether hypoxia or hypoxia-dependent conditions operat...
متن کاملHypoxia-induced Paracrine Regulation
Vascular endothelial growth factor (VEGF)/vascular permeability factor (VPF), an endothelial cell (EC)–specific mitogen, stimulates angiogenesis in vivo, particularly in ischemic regions. VEGF/VPF expression by cells of hypoxic tissues coincides with expression of its two receptors, KDR and flt-1 , by ECs in the same tissues. We investigated whether hypoxia or hypoxia-dependent conditions opera...
متن کاملPhysiological role of adenosine and its receptors in tissue hypoxia-induced
It is well known that the metabolic factors play an important role in the regulation of angiogenesis. Increased metabolic activity leads to decreased oxygen levels and causes tissue hypoxia. Hypoxia starts different signals to stimulate angiogenesis and promotes oxygen delivery to tissues. It has been suggested that released adenosine from hypoxic tissues plays a vital role in angiogenesis. ...
متن کاملA Mimic of the Tumor Microenvironment on GPR30 Gene Expression in Breast Cancer
Introduction: The G-protein coupled receptor 30 (GPR30) gene is a member of the G-protein coupled receptor (GPCR) family; involved in breast, endometrial, and ovarian cancers. Many GPCR receptors that are implicated in several types of human cancers are correlated with increased cell proliferation and tumor progression; especially GPR30 gene. Methods: The breast cancer MCF-7 and MDA-MB-231 cel...
متن کاملHypoxia upregulates VEGF expression in alveolar epithelial cells in vitro and in vivo.
We investigated regulation of vascular endothelial growth factor (VEGF) expression by hypoxia in cultured and freshly isolated rat alveolar epithelial cells (AEC). In vitro, hypoxia increased VEGF mRNA and protein levels, with maximal stimulation at 0% O2 for 18 h. A similar upregulation of VEGF expression was found in alveolar epithelial type II (ATII) cells freshly isolated from rats exposed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 276 1 شماره
صفحات -
تاریخ انتشار 1999