A methodology for efficiently sampling the conformation space of molecular structures.

نویسندگان

  • Audrey Lee
  • Ileana Streinu
  • Oliver Brock
چکیده

Motivated by recently developed computational techniques for studying protein flexibility, and their potential applications in docking, we propose an efficient method for sampling the conformational space of complex molecular structures. We focus on the loop closure problem, identified in the work of Thorpe and Lei (2004 Phil. Mag. 84 1323-31) as a primary bottleneck in the fast simulation of molecular motions. By modeling a molecular structure as a branching robot, we use an intuitive method in which the robot holds onto itself for maintaining loop constraints. New conformations are generated by applying random external forces, while internal, attractive forces pull the loops closed. Our implementation, tested on several model molecules with low number of degrees of freedom but many interconnected loops, gives promising results that show an almost four times speed-up on the benchmark cube-molecule of Thorpe and Lei.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mass-weighted molecular dynamics simulation and conformational analysis of polypeptide.

Atomic motions in protein molecules have been studied by molecular dynamics (MD) simulations; dynamics simulation methods have also been employed in conformational studies of polypeptide molecules. It was found that when atomic masses are weighted, the molecular dynamics method can significantly increase the sampling of dihedral conformation space in such studies, compared to a conventional MD ...

متن کامل

Sampling of conformation space in torsion angle dynamics calculations

Torsion angle dynamics (TAD) performs molecular dynamics simulation using torsion angles instead of Cartesian coordinates as degrees of freedom. TAD algorithms used in conjunction with simulated annealing are one of the common methods for the calculation of three-dimensional protein structures from NMR data. For this application of TAD, unbiased sampling of conformation space is essential. This...

متن کامل

OPTIMIZATION OF SKELETAL STRUCTURES USING IMPROVED GENETIC ALGORITHM BASED ON PROPOSED SAMPLING SEARCH SPACE IDEA

In this article, by Partitioning of designing space, optimization speed is tried to be increased by GA. To this end, designing space search is done in two steps which are global search and local search. To achieve this goal, according to meshing in FEM, firstly, the list of sections is divided to specific subsets. Then, intermediate member of each subset, as representative of subset, is defined...

متن کامل

Sampling Multiple Scoring Functions Can Improve Protein Loop Structure Prediction Accuracy

Accurately predicting loop structures is important for understanding functions of many proteins. In order to obtain loop models with high accuracy, efficiently sampling the loop conformation space to discover reasonable structures is a critical step. In loop conformation sampling, coarse-grain energy (scoring) functions coupling with reduced protein representations are often used to reduce the ...

متن کامل

Experimental Studies, Response Surface Methodology and Molecular Modeling for Optimization and Mechanism Analysis of Methylene Blue Dye Removal by Different Clays

In this work, three types of natural clays including kaolinite, montmorillonite, and illite with different molecular structures, as adsorbents, are selected for the removal of methylene blue dye, and their performance is investigated. Also the optimization and the analysis of the dye adsorption mechanism are performed using the response surface methodology, molecular modeling, and experimental ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical biology

دوره 2 4  شماره 

صفحات  -

تاریخ انتشار 2005