Carmichael Numbers in Arithmetic Progressions

نویسندگان

  • KAISA MATOMÄKI
  • I. E. Shparlinski
چکیده

We prove that when (a, m) = 1 and a is a quadratic residue mod m, there are infinitely many Carmichael numbers in the arithmetic progression a mod m. Indeed the number of them up to x is at least x1/5 when x is large enough (depending on m). 2010 Mathematics subject classification: primary 11N25; secondary 11A51.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Carmichael numbers in arithmetic progressions

Assuming a weak version of a conjecture of Heath-Brown on the least prime in a residue class, we show that for any coprime integers a and m > 1, there are infinitely many Carmichael numbers in the arithmetic progression a mod m.

متن کامل

Infinitude of Elliptic Carmichael Numbers

In 1987, Gordon gave an integer primality condition similar to the familiar test based on Fermat’s little theorem, but based instead on the arithmetic of elliptic curves with complex multiplication. We prove the existence of infinitely many composite numbers simultaneously passing all elliptic curve primality tests assuming a weak form of a standard conjecture on the bound on the least prime in...

متن کامل

A 43 INTEGERS 12 ( 2012 ) ARITHMETIC PROGRESSIONS IN THE POLYGONAL NUMBERS Kenneth

In this paper, we investigate arithmetic progressions in the polygonal numbers with a fixed number of sides. We first show that four-term arithmetic progressions cannot exist. We then describe explicitly how to find all three-term arithmetic progressions. Finally, we show that not only are there infinitely many three-term arithmetic progressions, but that there are infinitely many three-term ar...

متن کامل

On rainbow 4-term arithmetic progressions

{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi'{c} and Radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...

متن کامل

Arithmetic Progressions of Four Squares

Suppose a, b, c, and d are rational numbers such that a2, b2, c2, and d2 form an arithmetic progression: the differences b2−a2, c2−b2, and d2−c2 are equal. One possibility is that the arithmetic progression is constant: a2, a2, a2, a2. Are there arithmetic progressions of four rational squares which are not constant? This question was first raised by Fermat in 1640. There are no such progressio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013