When a case is not a case: effects of phenotype misclassification on power and sample size requirements for the transmission disequilibrium test with affected child trios.

نویسندگان

  • Steven Buyske
  • Guang Yang
  • Tara C Matise
  • Derek Gordon
چکیده

Phenotype misclassification in genetic studies can decrease the power to detect association between a disease locus and a marker locus. To date, studies of misclassification have focused primarily on case-control designs. The purpose of this work is to quantify the effects of phenotype misclassification on the transmission disequilibrium test (TDT) applied to affected child trios, where both parents are genotyped. We compute the non-centrality parameter of the distribution corresponding to the TDT statistic when there is linkage and association of a marker locus with a disease locus and there is phenotype misclassification. We verify our analytic calculations with simulations and provide an example sample size calculation. In our simulation studies, the maximum absolute difference between statistical power computed by simulation and analytic methods is 0.018. In an example sample size calculation, we observe that to maintain equivalent power, the required sample size increases when the disease prevalence decreases or when the misclassification rate increases. A 39-fold sample size increase is required when the misclassification rate is 5% and the disease prevalence is 1%. Given the potentially substantial power loss for the TDT in the presence of misclassification, we recommend that researchers incorporate phenotype misclassification into their study design for genetic association using trio data. We have developed freely available software that computes power loss for a fixed sample size or sample size for a fixed power in the presence of phenotype misclassification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ascertainment through family history of disease often decreases the power of family-based association studies.

Selection of cases with additional affected relatives has been shown to increase the power of the case-control association design. We investigated whether this strategy can also improve the power of family-based association studies that use the transmission disequilibrium test (TDT), while accounting for the effects of residual polygenic and environmental factors on disease liability. Ascertain...

متن کامل

Power Analysis of C-TDT for Small Sample Size Genome-Wide Association Studies by the Joint Use of Case-Parent Trios and Pairs

In family-based genetic association studies, it is possible to encounter missing genotype information for one of the parents. This leads to a study consisting of both case-parent trios and case-parent pairs. One of the approaches to this problem is permutation-based combined transmission disequilibrium test statistic. However, it is still unknown how powerful this test statistic is with small s...

متن کامل

Analysis of Case-Parent Trios Using a Loglinear Model with Adjustment for Transmission Ratio Distortion

Transmission of the two parental alleles to offspring deviating from the Mendelian ratio is termed Transmission Ratio Distortion (TRD), occurs throughout gametic and embryonic development. TRD has been well-studied in animals, but remains largely unknown in humans. The Transmission Disequilibrium Test (TDT) was first proposed to test for association and linkage in case-trios (affected offspring...

متن کامل

The power of the transmission disequilibrium test (TDT) with both case-parent and control-parent trios.

The transmission disequilibrium test (TDT) customarily uses affected children and their parents (often case-parent trios, TDTD). Control-parent trios are necessary to guard against spurious significant results due to segregation distortion but are not generally utilized in the identification of disease susceptibility loci (DSL). Controls are often easy to recruit and the TDT can easily be exten...

متن کامل

Transmission/Disequilibrium Tests Incorporating Unaffected Offspring

We propose a new method for family-based tests of association and linkage called transmission/disequilibrium tests incorporating unaffected offspring (TDTU). This new approach, constructed based on transmission/disequilibrium tests for quantitative traits (QTDT), provides a natural extension of the transmission/disequilibrium test (TDT) to utilize transmission information from heterozygous pare...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human heredity

دوره 67 4  شماره 

صفحات  -

تاریخ انتشار 2009