Optimal estimation for doubly multivariate data in blocked compound symmetric covariance structure

نویسندگان

  • Anuradha Roy
  • Roman Zmyslony
  • Miguel Fonseca
  • Ricardo Leiva
چکیده

The paper deals with the best unbiased estimators of the blocked compound symmetric covariance structure for m−variate observations over u sites under the assumption of multivariate normality. The free-coordinate approach is used to prove that the quadratic estimation of covariance parameters is equivalent to linear estimation with a properly defined inner product in the space of symmetric matrices. Complete statistics are then derived to prove that the estimators are best unbiased. Finally, strong consistency is proven. The proposed method is implemented with a real data set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testing the equality of mean vectors for paired doubly multivariate observations in blocked compound symmetric covariance matrix setup

In this article we develop a test statistic for testing the equality of mean vectors for paired doubly multivariate observations for q response variables and u sites in blocked compound symmetric covariance matrix setting. The new test is implemented with two real data sets.

متن کامل

Score test for a separable covariance structure with the first component as compound symmetric correlation matrix Score test for a separable covariance structure with the first component as compound symmetric correlation matrix

Likelihood ratio tests (LRTs) for separability of a covariance structure for doubly multivariate data are widely studied in the literature. There are three types of LRT: biased tests based on an asymptotic chi-square null distribution; unbiased/unmodified tests based on an empirical null distribution; and unbiased/modified tests with a test statistic modified to follow a theoretical chi-square ...

متن کامل

199-30: Testing the Hypothesis of a Kroneckar Product Covariance Matrix in Multivariate Repeated Measures Data

We consider the problem of testing of a Kronecker product structured variance covariance matrix against the unstructured variance covariance matrix in the context of multivariate repeated measures data. A likelihood ratio test statistic is developed for this purpose. However, the test statistic for this test cannot be expressed in a closed form. An algorithm, is suggested for the maximum likeli...

متن کامل

Modelling of Correlated Ordinal Responses, by Using Multivariate Skew Probit with Different Types of Variance Covariance Structures

In this paper, a multivariate fundamental skew probit (MFSP) model is used to model correlated ordinal responses which are constructed from the multivariate fundamental skew normal (MFSN) distribution originate to the greater flexibility of MFSN. To achieve an appropriate VC structure for reaching reliable statistical inferences, many types of variance covariance (VC) structures are considered ...

متن کامل

Some results on the symmetric doubly stochastic inverse eigenvalue problem

‎The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$‎, ‎to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$‎. ‎If there exists an $ntimes n$ symmetric doubly stochastic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 144  شماره 

صفحات  -

تاریخ انتشار 2016