Preferential Mode of Gas Invasion in Sediments: Grain-Scale Model of Coupled Multiphase Fluid Flow and Sediment Mechanics
نویسندگان
چکیده
We present a discrete element model for simulating, at the grain scale, gas migration in brine-saturated deformable media. We rigorously account for the presence of two fluids in the pore space by incorporating forces on grains due to pore fluid pressures, and surface tension between fluids. This model, which couples multiphase fluid flow with sediment mechanics, permits investigating the upward migration of gas through a brine-filled sediment column. We elucidate the ways in which gas migration may take place: (1) by capillary invasion in a rigid-like medium; and (2) by initiation and propagation of a fracture. We find that grain size is the main factor controlling the mode of gas transport in the sediment, and show that coarse-grain sediments favor capillary invasion, whereas fracturing dominates in fine-grain media. The results have important implications for understanding vent sites and pockmarks in the ocean floor, deep sub-seabed storage of carbon dioxide, and gas hydrate accumulations in ocean sediments and permafrost regions. Our results predict that, in fine sediments, hydrate will likely form in veins following a fracture-network pattern. In coarse sediments, the buoyant methane gas is likely to invade the pore space more uniformly, in a process akin to invasion percolation, and the overall pore occupancy is likely to be much higher than for a fracture-dominated regime. These implications are consistent with laboratory experiments and field observations of methane hydrates in natural systems. Thesis Supervisor: Ruben Juanes Title: Assistant Professor, Civil and Environmental Engineering
منابع مشابه
Preferential Mode of gas invasion in sediments: Grain- scale mechanistic model of coupled multiphase fluid flow and sediment mechanics
Preferential Mode of gas invasion in sediments: Grain-scale mechanistic model of coupled multiphase fluid flow and sediment mechanics. " J. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits ...
متن کاملPore-scale Mechanistic Study of the Preferential Mode of Hydrate Formation in Sediments: Coupling of Multiphase Fluid Flow and Sediment Mechanics
We present a discrete element model for the simulation, at the grain scale, of gas migration in brine-saturated deformable media. We account rigorously for the presence of two fluids in the pore space by incorporating grain forces due to pore fluid pressures, and surface tension between fluids. The coupled model permits investigating an essential process that takes place at the base of the hydr...
متن کاملMultiphase flow and tromp curve simulation of dense medium cyclones using Computational Fluid Dynamics
Dense Medium Cyclone is a high capacity device that is widely used in coal preparation. It is simple in design but the swirling turbulent flow, the presence of medium and coal with different density and size fraction and the presence of the air-core make the flow pattern in DMCs complex. In this article the flow pattern simulation of DMC is performed with computational fluid dynamics and Fluent...
متن کاملA Dynamic Simulation of Annular Multiphase Flow during Deep-water Horizontal Well Drilling and the Analysis of Influential Factors
A gas kick simulation model for deep-water horizontal well with diesel-based drilling fluid is presented in this paper. This model is mainly based on the mass, momentum, and energy conservation equations. The unique aspect of this model is the fluid-gas coupling and the change of mud properties after the gas influx from the formation. The simulation results show that the gas in an annulus disso...
متن کاملCFD Modeling of the Feed Distribution System of a Gas-Solid Reactor
Granular flow simulation using CFD has received a lot of attention in recent years. In such cases, CFD is either, coupled with Discrete Element Method (DEM) techniques for appropriate incorporation of inter-particle collisions, or the Eulerian CFD approach is used in which granular particles are treated as they were fluid. In the present study, a CFD analysis was performed...
متن کامل