The Rim101p/PacC pathway and alkaline pH regulate pattern formation in yeast colonies.

نویسندگان

  • Sarah Piccirillo
  • Melissa G White
  • Jeffrey C Murphy
  • Douglas J Law
  • Saul M Honigberg
چکیده

Multicellular organisms utilize cell-to-cell signals to build patterns of cell types within embryos, but the ability of fungi to form organized communities has been largely unexplored. Here we report that colonies of the yeast Saccharomyces cerevisiae formed sharply divided layers of sporulating and nonsporulating cells. Sporulation initiated in the colony's interior, and this region expanded upward as the colony matured. Two key activators of sporulation, IME1 and IME2, were initially transcribed in overlapping regions of the colony, and this overlap corresponded to the initial sporulation region. The development of colony sporulation patterns depended on cell-to-cell signals, as demonstrated by chimeric colonies, which contain a mixture of two strains. One such signal is alkaline pH, mediated through the Rim101p/PacC pathway. Meiotic-arrest mutants that increased alkali production stimulated expression of an early meiotic gene in neighboring cells, whereas a mutant that decreased alkali production (cit1Delta) decreased this expression. Addition of alkali to colonies accelerated the expansion of the interior region of sporulation, whereas inactivation of the Rim101p pathway inhibited this expansion. Thus, the Rim101 pathway mediates colony patterning by responding to cell-to-cell pH signals. Cell-to-cell signals coupled with nutrient gradients may allow efficient spore formation and spore dispersal in natural environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationship of DFG16 to the Rim101p pH response pathway in Saccharomyces cerevisiae and Candida albicans.

Many fungal pH responses depend upon conserved Rim101p/PacC transcription factors, which are activated by C-terminal proteolytic processing. The means by which environmental pH is sensed by this pathway are not known. Here, we report a screen of the Saccharomyces cerevisiae viable deletion mutant library that has yielded a new gene required for processed Rim101p accumulation, DFG16. An S. cerev...

متن کامل

Candida albicans Rim13p, a protease required for Rim101p processing at acidic and alkaline pHs.

Candida albicans is an important commensal of mucosal surfaces that is also an opportunistic pathogen. This organism colonizes a wide range of host sites that differ in pH; thus, it must respond appropriately to this environmental stress to survive. The ability to respond to neutral-to-alkaline pHs is governed in part by the RIM101 signal transduction pathway. Here we describe the analysis of C...

متن کامل

Ambient pH Controls Glycogen Levels by Regulating Glycogen Synthase Gene Expression in Neurospora crassa. New Insights into the pH Signaling Pathway

Glycogen is a polysaccharide widely distributed in microorganisms and animal cells and its metabolism is under intricate regulation. Its accumulation in a specific situation results from the balance between glycogen synthase and glycogen phosphorylase activities that control synthesis and degradation, respectively. These enzymes are highly regulated at transcriptional and post-translational lev...

متن کامل

Multivesicular body-ESCRT components function in pH response regulation in Saccharomyces cerevisiae and Candida albicans.

The ESCRT-I, -II, and -III protein complexes function to create multivesicular bodies (MVBs) for sorting of proteins destined for the lysosome or vacuole. Prior studies with Saccharomyces cerevisiae have shown that the ESCRT-III protein Snf7p interacts with the MVB pathway protein Bro1p as well as its homolog Rim20p. Rim20p has no role in MVB formation, but functions in the Rim101p pH-response ...

متن کامل

pH response transcription factor PacC controls salt stress tolerance and expression of the P-Type Na+ -ATPase Ena1 in Fusarium oxysporum.

Fungi possess efficient mechanisms of pH and ion homeostasis, allowing them to grow over a wide range of environmental conditions. In this study, we addressed the role of the pH response transcription factor PacC in salt tolerance of the vascular wilt pathogen Fusarium oxysporum. Loss-of-function pacC(+/-) mutants showed increased sensitivity to Li(+) and Na(+) and accumulated higher levels of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 184 3  شماره 

صفحات  -

تاریخ انتشار 2010