Lowering N2O emissions from soils using eucalypt biochar: the importance of redox reactions
نویسندگان
چکیده
Agricultural soils are the primary anthropogenic source of atmospheric nitrous oxide (N2O), contributing to global warming and depletion of stratospheric ozone. Biochar addition has shown potential to lower soil N2O emission, with the mechanisms remaining unclear. We incubated eucalypt biochar (550 °C)--0, 1 and 5% (w/w) in Ferralsol at 3 water regimes (12, 39 and 54% WFPS)--in a soil column, following gamma irradiation. After N2O was injected at the base of the soil column, in the 0% biochar control 100% of expected injected N2O was released into headspace, declining to 67% in the 5% amendment. In a 100% biochar column at 6% WFPS, only 16% of the expected N2O was observed. X-ray photoelectron spectroscopy identified changes in surface functional groups suggesting interactions between N2O and the biochar surfaces. We have shown increases in -O-C = N /pyridine pyrrole/NH3, suggesting reactions between N2O and the carbon (C) matrix upon exposure to N2O. With increasing rates of biochar application, higher pH adjusted redox potentials were observed at the lower water contents. Evidence suggests that biochar has taken part in redox reactions reducing N2O to dinitrogen (N2), in addition to adsorption of N2O.
منابع مشابه
Effects of Biochar Addition on CO2 and N2O Emissions following Fertilizer Application to a Cultivated Grassland Soil
Carbon (C) sequestration potential of biochar should be considered together with emission of greenhouse gases when applied to soils. In this study, we investigated CO2 and N2O emissions following the application of rice husk biochars to cultivated grassland soils and related gas emissions tos oil C and nitrogen (N) dynamics. Treatments included biochar addition (CHAR, NO CHAR) and amendment (CO...
متن کاملStructure and Activity of Denitrifier Communi- ties in Biochar-Amended Soil and Their Impact on N2O Emissions
Nitrous oxide is a greenhouse gas with a global warming potential about 300 times higher than CO2. The main sources of N2O are microbial-mediated nitrogen transformation reactions in soils. Denitrification represents one of the major N2Oproducing pathways in oxygen-limited zones. Soil biochar amendment has been demonstrated to reduce N2O emissions in microcosms and in the field. Although N2O em...
متن کاملResponse of N2O emissions to biochar amendment in a cultivated sandy loam soil during freeze-thaw cycles
In the last decade, an increasing number of studies have reported that soil nitrous oxide (N2O) emissions can be reduced by adding biochar. However, the effect of biochar amendment on soil N2O emissions during freeze-thaw cycle (FTC) is still unknown. In this laboratory study, biochar (0%, 2% and 4%, w/w) was added into a cultivated sandy loam soil and then treated with 15 times of FTC (each FT...
متن کاملBiochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions?
Agricultural soils represent the main source of anthropogenic N2O emissions. Recently, interactions of black carbon with the nitrogen cycle have been recognized and the use of biochar is being investigated as a means to reduce N2O emissions. However, the mechanisms of reduction remain unclear. Here we demonstrate the significant impact of biochar on denitrification, with a consistent decrease i...
متن کاملBiochar increases soil N2O emissions produced by nitrification-mediated pathways
*Correspondence: María L. Cayuela, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain e-mail: [email protected] In spite of the numerous studies reporting a decrease in soil nitrous oxide (N2O) emissions after biochar amendment, there is still a lack of understanding of the processes involved. Hence the subject remains controversial, with a number of studies showing no cha...
متن کامل