Stability and state of aggregation of aqueous fibrinogen and dipalmitoylphosphatidylcholine lipid vesicles.
نویسندگان
چکیده
The stability and state of aggregation of aqueous fibrinogen (FB) and dipalmitoylphosphatidylcholine (DPPC) vesicles in water or buffer at 25 degrees C were studied with dynamic light scattering (DLS), UV-vis spectroturbidimetry (ST), and cryo-transmission electron microscopy (cryo-TEM). In water, when 1000 ppm (0.10 wt %) DPPC dispersions were prepared with a protocol including extensive sonication, they contained mostly vesicles and were quite clear, transparent, and stable for at least 30 days. FB mixtures with water (0.075 wt %) were quite unstable and biphasic. They formed large aggregates which eventually precipitated. The addition of DPPC vesicles into these unstable FB dispersions reversed FB aggregation and precipitation and produced stable translucent microdispersions. The inferred lipid/protein aggregates were limited in size, with average diameters ranging from 200 to 300 nm. In buffer, DPPC dispersions were also clear and quite stable, with average dispersed particles diameter of ca. 90 nm. FB dissolved in aqueous buffer and formed transparent and stable solutions. Adding salt to an aggregated FB dispersion in water reversed the aggregation. FB aggregated and redissolved in the presence of the citrate and after the citrate was removed. There was no effect of citrate (present in FB initially) in the FB aggregation or redissolution. FB molecules in buffer form dimers or higher aggregates. Their average aggregation number is 2, determined with Rayleigh scattering analysis of turbidity data. The average hydrodynamic diameter of FB solutions from DLS was 30 nm. Mixing a stable FB solution in buffer and a stable DPPC dispersion in buffer produced highly unstable mixtures, in which large aggregates precipitated. These results have implications in understanding the interactions of lipids and proteins in many biological applications and food processing applications.
منابع مشابه
Surface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection
Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...
متن کاملSurface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection
Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...
متن کاملThe physicochemical and organoleptic evaluation of the nano/micro encapsulation of Omega-3 fatty acids in lipid vesicular systems
Objective(s): Omega-3 fatty acids play a key role in maintaining human health. The present study aimed to reduce the fishy smell and taste of omega-3 fatty acids through the encapsulation of lipid vesicles. Materials and Methods: Different non-ionic surfactants from the sorbitan ester family and egg lecithin with cholesterol were utilized to form micro-niosomal and liposomal formulations ...
متن کاملMolecular dynamics simulation of the formation, structure, and dynamics of small phospholipid vesicles.
Here, we use coarse grained molecular dynamics (MD) simulations to study the spontaneous aggregation of dipalmitoylphosphatidylcholine (DPPC) lipids into small unilamellar vesicles. We show that the aggregation process occurs on a nanosecond time scale, with bicelles and cuplike vesicles formed at intermediate stages. Formation of hemifused vesicles is also observed at higher lipid concentratio...
متن کاملEffect of Gd3+ on the colloidal stability of liposomes.
Lanthanide ions such as La3+ and Gd3+ are well known to have large effects on the structure of phospholipid membranes. Unilamellar vesicles of dipalmitoylphosphatidylcholine (DPPC) were prepared by sonication method and confirmed by transmission electron microscopy. The effects of concentration of gadolinium ions Gd3+ on DPPC unilamellar vesicles in aqueous media were studied by different techn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 23 10 شماره
صفحات -
تاریخ انتشار 2007