On Families of Bipartite Graphs Associated with Sums of Fibonacci and Lucas Numbers

نویسندگان

  • Emrah Kilic
  • Dursun Tasci
چکیده

In this paper, we consider the relationships between the sums of the Fibonacci and Lucas numbers and 1-factors of bipartite graphs. 1. Introduction The Fibonacci sequence, fFng ; is de…ned by the recurrence relation, for n > 2 Fn = Fn 1 + Fn 2 where F1 = F2 = 1: The Lucas Sequence, fLng ; is de…ned by the recurrence relation, for n > 2 Ln = Ln 1 + Ln 2 where L1 = 1; L2 = 3: The permanent of an n-square matrix A = (aij) is de…ned by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Fibonacci and Lucas p-numbers, their sums, families of bipartite graphs and permanents of certain matrices

In this paper we consider certain generalizations of the well-known Fibonacci and Lucas numbers, the generalized Fibonacci and Lucas p-numbers. We give relationships between the generalized Fibonacci p-numbers, Fp(n), and their sums, Pn i1⁄41F pðiÞ, and the 1-factors of a class of bipartite graphs. Further we determine certain matrices whose permanents generate the Lucas p-numbers and their sum...

متن کامل

On Families Of Bipartite Graphs Associated With Sums Of Generalized Order-k Fibonacci And Lucas Numbers

In this paper, we consider the relationships between the sums of the generalized order-k Fibonacci and Lucas numbers and 1-factors of bipartite graphs. 1. Introduction We consider the generalized order k Fibonacci and Lucas numbers. In [1], Er de…ned k sequences of the generalized order k Fibonacci numbers as shown: g n = k X j=1 g n j ; for n > 0 and 1 i k; (1.1) with boundary conditions for 1...

متن کامل

On the Number of 1-factors of Bipartite Graphs

Abstract: In this paper, we investigated relationships between the Fibonacci, Lucas, Padovan numbers and 1-factors of some bipartite graphs with upper Hessenberg adjacency matrix. We calculated permanent of these upper Hessenberg matrices by contraction method and show that their permanents are equal to elements of the Fibonacci, Lucas and Padovan numbers. At the end of the paper, we give some ...

متن کامل

Families of Sequences From a Class of Multinomial Sums

In this paper we obtain formulas for certain sums of products involving multinomial coefficients and Fibonacci numbers. The sums studied here may be regarded as generalizations of the binomial transform of the sequence comprising the even-numbered terms of the Fibonacci sequence. The general formulas, involving both Fibonacci and Lucas numbers, give rise to infinite sequences that are parameter...

متن کامل

Energy of Graphs, Matroids and Fibonacci Numbers

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ars Comb.

دوره 89  شماره 

صفحات  -

تاریخ انتشار 2008