Quantitative pixel-wise measurement of myocardial blood flow: The impact of surface coil-related field inhomogeneity and a comparison of methods for its correction

نویسندگان

  • Christopher A Miller
  • Li-Yueh Hsu
  • Allison Ta
  • Hannah Conn
  • Susanne Winkler
  • Andrew E Arai
چکیده

BACKGROUND Surface coil-related field inhomogeneity potentially confounds pixel-wise quantitative analysis of perfusion CMR images. This study assessed the effect of surface coil-related field inhomogeneity on the spatial variation of pixel-wise myocardial blood flow (MBF), and assessed its impact on the ability of MBF quantification to differentiate ischaemic from remote coronary territories. Two surface coil intensity correction (SCIC) techniques were evaluated: 1) a proton density-based technique (PD-SCIC) and; 2) a saturation recovery steady-state free precession-based technique (SSFP-SCIC). METHODS 26 subjects (18 with significant CAD and 8 healthy volunteers) underwent stress perfusion CMR using a motion-corrected, saturation recovery SSFP dual-sequence protocol. A proton density (PD)-weighted image was acquired at the beginning of the sequence. Surface coil-related field inhomogeneity was approximated using a third-order surface fit to the PD image or a pre-contrast saturation prepared SSFP image. The estimated intensity bias field was subsequently applied to the image series. Pixel-wise MBF was measured from mid-ventricular stress images using the two SCIC approaches and compared to measurements made without SCIC. RESULTS MBF heterogeneity in healthy volunteers was higher using SSFP-SCIC (24.8 ± 4.1%) compared to PD-SCIC (20.8 ± 3.0%; p = 0.009), however heterogeneity was significantly lower using either SCIC technique compared to analysis performed without SCIC (36.2 ± 6.3%). In CAD patients, the difference in MBF between remote and ischaemic territories was minimal when analysis was performed without SCIC (0.06 ± 0.91 mL/min/kg), and was substantially lower than with either PD-SCIC (0.50 ± 0.63 mL/min/kg; p = 0.013) or with SSFP-SCIC (0.63 ± 0.89 mL/min/kg; p = 0.005). In 6 patients, MBF quantified without SCIC was artifactually higher in the stenosed coronary territory compared to the remote territory. PD-SCIC and SSFP-SCIC had similar differences in MBF between remote and ischaemic territories (p = 0.145). CONCLUSIONS This study demonstrates that surface coil-related field inhomogeneity can confound pixel-wise MBF quantification. Whilst a PD-based SCIC led to a more homogenous correction than a saturation recovery SSFP-based technique, this did not result in an appreciable difference in the differentiation of ischaemic from remote coronary territories and thus either method could be applied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative pixel-wise measurement of myocardial blood flow: a comparison of methods to correct for surface coil-related field inhomogeneity

Background Pixel-wise quantitative analysis of cardiovascular magnetic resonance (CMR) perfusion images allows myocardial blood flow (MBF) to be measured at the level of approximately 30 μL of myocardium. However B1-field inhomogeneity, induced by phased array surface receiver coils, potentially confounds MBF measurements. The aim of this study was to compare the effect of: 1. no surface coil i...

متن کامل

Fully automated pixel-wise myocardial blood flow quantification with first-pass perfusion CMR

Methods Rest and adenosine stress perfusion imaging was performed on 17 normal volunteers. A saturation recovery SSFP dual-sequence technique was used to acquire three myocardial slices and an arterial input function (AIF) image series. A proton-density weighted image was acquired at the beginning of each series. Fully quantitative perfusion pixel maps were generated by an automated processing ...

متن کامل

Evaluation of fully automated motion corrected first pass myocardial perfusion MRI with semi quantitative perfusion parameter maps in patients with ischemic heart disease

Background Coronary heart disease is the leading cause of death and disability in the US. FPMP MRI is increasingly used to assess ischemic heart disease; however respiratory motion is one of the major problems for myocardial blood flow quantification. An algorithm for motion correction, surface coil correction, temporal denoising and robust pixel-wise parameter map generation model was previous...

متن کامل

Direct and Indirect Surface Coil Correction for Cardiac Perfusion MRI

Introduction Although the first-pass myocardial perfusion MRI has proven its effectiveness in the diagnosis of ischemic heart disease, this technique is still not routinely used. Certain technical difficulties prevent perfusion MRI from being added into the clinical workflow, including complex cardiac motion, limited imaging time, and B1-field inhomogeneity caused by non-uniform characteristics...

متن کامل

Image Quality Enhancement Using Pixel Wise Gamma Correction

This paper presents a new automatic image enhancement method by modifying the gamma value of its individual pixels. Most of existing gamma correction methods apply a uniform gamma value across the image. Considering the fact that gamma variation for a single image is actually nonlinear, the proposed method locally estimates the gamma values in an image using support vector machine. First, a dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2015