Towards protein-protein docking with significant structural changes using CABS-dock
نویسندگان
چکیده
The protein-protein interactions (PPIs) are crucial for understanding the majority of cellular processes. PPIs play important role in gene transcription regulation, cellular signaling, molecular basis of immune response and more. Moreover, a disruption of these mechanisms is frequently postulated as a possible cause of diseases such as Alzheimers or cancer. For many of biologically relevant cases the structure of protein-protein complexes remain unknown. Therefore computational techniques, including molecular docking, have become a valuable part of drug discovery pipelines. Unfortunately, none of the widely used protein-protein docking tools is free from serious limitations. Typically, in docking simulations the protein flexibility is either completely neglected or very limited. Additionally, some knowledge of the approximate location and/or the shape of the active site is also required. Such limitations arise mostly from the enormous number of degrees of freedom of proteinprotein systems. In this paper, an efficient computational method for protein-protein docking is proposed and initially tested on a single docking case. The proposed method is based on a two-step procedure. In the first step, CABS-dock web server for protein-peptide docking is used to dock a peptide, which is the appropriate protein fragment responsible for the protein-protein interaction, to the other protein partner. During peptide docking, no knowledge about the binding site, nor the peptide structure, is used and the peptide is allowed to be fully flexible. In the second step, the docked peptide is used in the structural adjustment of protein complex partners. The proposed method allowed us to obtain a high accuracy model, therefore it provides a promising framework for further advances.
منابع مشابه
Highly Flexible Protein-Peptide Docking Using CABS-Dock.
Protein-peptide molecular docking is a difficult modeling problem. It is even more challenging when significant conformational changes that may occur during the binding process need to be predicted. In this chapter, we demonstrate the capabilities and features of the CABS-dock server for flexible protein-peptide docking. CABS-dock allows highly efficient modeling of full peptide flexibility and...
متن کاملProtein-peptide molecular docking with large-scale conformational changes: the p53-MDM2 interaction
Protein-peptide interactions are often associated with large-scale conformational changes that are difficult to study either by classical molecular modeling or by experiment. Recently, we have developed the CABS-dock method for flexible protein-peptide docking that enables large-scale rearrangements of the protein chain. In this study, we use CABS-dock to investigate the binding of the p53-MDM2...
متن کاملModeling of protein-peptide interactions using the CABS-dock web server for binding site search and flexible docking.
Protein-peptide interactions play essential functional roles in living organisms and their structural characterization is a hot subject of current experimental and theoretical research. Computational modeling of the structure of protein-peptide interactions is usually divided into two stages: prediction of the binding site at a protein receptor surface, and then docking (and modeling) the pepti...
متن کاملCABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site
Protein-peptide interactions play a key role in cell functions. Their structural characterization, though challenging, is important for the discovery of new drugs. The CABS-dock web server provides an interface for modeling protein-peptide interactions using a highly efficient protocol for the flexible docking of peptides to proteins. While other docking algorithms require pre-defined localizat...
متن کاملFlexible protein-peptide docking using CABS-dock with knowledge about the binding site
Despite considerable efforts, structural prediction of proteinpeptide complexes is still a very challenging task, mainly due to two reasons: high flexibility of the peptides and transient character of their interactions with proteins. Recently we have developed an automated web server CABS-dock (http://biocomp.chem.uw.edu.pl/CABSdock), which conducts flexible protein-peptide docking without any...
متن کامل