Nonconforming Maxwell Eigensolvers

نویسندگان

  • Susanne C. Brenner
  • Fengyan Li
  • Li-Yeng Sung
چکیده

Three Maxwell eigensolvers are discussed in this paper. Two of them use classical nonconforming finite element approximations, and the other is an interior penalty type discontinuous Galerkin method. A main feature of these solvers is that they are based on the formulation of the Maxwell eigenproblem on the space H0(curl; Ω) ∩ H(div; Ω). These solvers are free of spurious eigenmodes and they do not require choosing penalty parameters. Furthermore, they satisfy optimal order error estimates on properly graded meshes, and their analysis is greatly simplified by the underlying compact embedding of H0(curl; Ω)∩H(div ; Ω) in L2(Ω). The performance and the relative merits of these eigensolvers are demonstrated through numerical experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Locally Divergence-free Nonconforming Finite Element Method for the Reduced Time-harmonic Maxwell Equations

In this work, we will focus on (2), which will be referred to as the reduced time-harmonic Maxwell (RTHM) equations. Under the assumption that k is not a Maxwell eigenvalue, the RTHM equations have a unique solution in H0(curl; Ω) ∩H(div ; Ω). Our main achievement in this work is that we design a numerical method for RTHM equations using locally divergence-free Crouzeix-Raviart nonconforming P1...

متن کامل

A locally divergence-free nonconforming finite element method for the time-harmonic Maxwell equations

A new numerical method for computing the divergence-free part of the solution of the time-harmonic Maxwell equations is studied in this paper. It is based on a discretization that uses the locally divergence-free CrouzeixRaviart nonconforming P1 vector fields and includes a consistency term involving the jumps of the vector fields across element boundaries. Optimal convergence rates (up to an a...

متن کامل

Abstract nonconforming error estimates and application to boundary penalty methods for diffusion equations and time-harmonic Maxwell's equations

nonconforming error estimates and application to boundary penalty methods for diffusion equations and time-harmonic Maxwell’s equations Alexandre Ern, Jean-Luc Guermond To cite this version: Alexandre Ern, Jean-Luc Guermond. Abstract nonconforming error estimates and application to boundary penalty methods for diffusion equations and time-harmonic Maxwell’s equations. 2017. HAL Id: hal-01563594...

متن کامل

Nonconforming Mixed Finite Element Method for Time-dependent Maxwell’s Equations with ABC

In this paper, a nonconforming mixed finite element method (FEM) is presented to approximate time-dependent Maxwell’s equations in a three-dimensional bounded domain with absorbing boundary conditions (ABC). By employing traditional variational formula, instead of adding penalty terms, we show that the discrete scheme is robust. Meanwhile, with the help of the element’s typical properties and d...

متن کامل

Low Order Crouzeix-raviart Type Nonconforming Finite Element Methods for Approximating Maxwell’s Equations

The aim of this paper is to study the convergence analysis of three low order Crouzeix-Raviart type nonconforming rectangular finite elements to Maxwell’s equations, on a mixed finite element scheme and a finite element scheme, respectively. The error estimates are obtained for one of above elements with regular meshes and the other two under anisotropic meshes, which are as same as those in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2009