Oxygen-evolving Photosystem II core complexes: a new paradigm based on the spectral identification of the charge-separating state, the primary acceptor and assignment of low-temperature fluorescence.

نویسندگان

  • Elmars Krausz
  • Joseph L Hughes
  • Paul Smith
  • Ron Pace
  • Sindra Peterson Arsköld
چکیده

We review our recent low-temperature absorption, circular dichroism (CD), magnetic CD (MCD), fluorescence and laser-selective measurements of oxygen-evolving Photosystem II (PSII) core complexes and their constituent CP 4 3, CP 47 and D1/D2/cytb(559) sub-assemblies. Quantitative comparisons reveal that neither absorption nor fluorescence spectra of core complexes are simple additive combinations of the spectra of the sub-assemblies. The absorption spectrum of the D1/D2/cytb(559) component embedded within the core complex appears significantly better structured and red-shifted compared to that of the isolated sub-assembly. A characteristic MCD reduction or 'deficit' is a useful signature for the central chlorins in the reaction centre. We note a congruence of the MCD deficit spectra of the isolated D1/D2/cytb(559) sub-assemblies to their laser-induced transient bleaches associated with P 680. A comparison of spectra of core complexes prepared from different organisms helps distinguish features due to inner light-harvesting assemblies and the central reaction-centre chlorins. Electrochromic spectral shifts in core complexes that occur following low-temperature illumination of active core complexes arise from efficient charge separation and subsequent plastoquinone anion (Q(A)(-)) formation. Such measurements allow determinations of both charge-separation efficiencies and spectral characteristics of the primary acceptor, Pheo(D1). Efficient charge separation occurs with excitation wavelengths as long as 700 nm despite the illuminations being performed at 1.7 K and with an extremely low level of incident power density. A weak, homogeneously broadened, charge-separating state of PSII lies obscured beneath the CP 47 state centered at 690 nm. We present new data in the 690-760 nm region, clearly identifying a band extending to 730 nm. Active core complexes show remarkably strong persistent spectral hole-burning activity in spectral regions attributable to CP 43 and CP 47. Measurements of homogeneous hole-widths have established that, at low temperatures, excitation transfer from these inner light-harvesting assemblies to the reaction centre occurs with approximately 70-270 ps(-1) rates, when the quinone acceptor is reduced. The rate is slower for lower-energy sub-populations of an inhomogeneously broadened antenna (trap) pigment. The complex low-temperature fluorescence behaviour seen in PSII is explicable in terms of slow excitation transfer from traps to the weak low-energy charge-separating state and transfer to the more intense reaction-centre excitations near 685 nm. The nature and origin of the charge-separating state in oxygen-evolving PSII preparations is briefly discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis, Spectral Characterization and DFT Calculations of New Co(II) Complexes Derived from Benzimidazoles

The synthesis, characterization and quantum-chemical investigations of two new Co(II) complexesderived from fluorescent benzimidazoles have been reported. Two new fluorescentheterocyclic ligands were synthesized from the reduction of imidazo[4',5':3,4]benzo[1,2-c]isoxazole derivatives, and characterized by elemental analyses, IR, mass, and NMR spectra. Coordination of the bidentate ligands ...

متن کامل

Application of Charge Transfer Complexation Reaction for the Spectroscopy Determination of Anticonvulsant Drug Primidone

The interaction of the perimidone drug in solution state with the σ-acceptor iodine, the aliphatic π-acceptor tetracyanoethylene (TCNE) and the aromatic π-acceptor 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) have been studied through the initial formation of ionic intermediate to charge transfer (CT) complex in methanol at room temperature. The spectral studies of the complexes were determi...

متن کامل

Spectroscopic studies of photosystem II in chlorophyll d-containing Acaryochloris marina.

Photosystem II (PSII) electron transfer (ET) in the chlorophyll d-containing cyanobacterium Acaryochloris marina (A. marina) was studied by time-resolved electron paramagnetic resonance (EPR) spectroscopy at room temperature, chlorophyll fluorescence, and low-temperature optical spectroscopy. To maximize the ability to measure PSII ET in the intact cells of this organism, growth conditions were...

متن کامل

Multiple redox-active chlorophylls in the secondary electron-transfer pathways of oxygen-evolving photosystem II.

Photosystem II (PS II) is unique among photosynthetic reaction centers in having secondary electron donors that compete with the primary electron donors for reduction of P680(+). We have characterized the photooxidation and dark decay of the redox-active accessory chlorophylls (Chl) and beta-carotenes (Car) in oxygen-evolving PS II core complexes by near-IR absorbance and EPR spectroscopies at ...

متن کامل

Spectroscopic Study of Charge Transfer Complexes of Dibenzo-24-crown-8 (DB24C8) with Iodine in Three Chlorinated Solvents

Charge Transfer (CT) complexes formed between dibenzo-24-crown-8 (DB24C8) as an electron donor with the σ-electron acceptor iodine (I2) in chloroform, dichloromethane, and 1,2-dichloroethane solutions have been studied by different spectroscopic techniques at room temperature. The spectral studies of the complexes were det...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology

دوره 4 9  شماره 

صفحات  -

تاریخ انتشار 2005