Tunable Surface Plasmon and Phonon Polariton Interactions for Moderately Doped Semiconductor Surfaces
نویسندگان
چکیده
Spatial charge distribution for biased semiconductors fundamentally differs from metals since they can allow inhomogeneous charge distributions due to penetration of the electric field, as observed in the classical Schottky junctions. Similarly, the electrostatics of the dielectric/semiconductor interface can lead to a carrier depletion or accumulation in the semiconductor side when under applied bias. In this study, we demonstrate that the inhomogeneous carrier accumulation in a moderately p-doped GaAs-dielectric interface can be tailored for tunable plasmonics by an external voltage. Solving Maxwell's equations in the doped GaAs-dielectric stack, we investigate the tunability of the surface plasmon and phonon polaritons' interaction via an external bias. The plasmonic mode analysis of such an interface reveals interesting dispersion curves for surface plasmon and phonon polariton interactions that are not possible in metals. We show that the plasmon dispersion curve can be engineered through an external bias using the inherent properties of the p-doped GaAs- dielectric interface.
منابع مشابه
Topological insulators are tunable waveguides for hyperbolic polaritons
We present a theoretical analysis showing that layered topological insulators, for example, Bi2Se3 are optically hyperbolic materials in the range of terahertz (THz) frequencies. As such, these topological insulators possess deeply subdiffractional, highly directional collective modes: hyperbolic phonon polaritons. We predict that in thin crystals the dispersion of these modes is split into dis...
متن کاملElectrically - ' lnable Near - Field Heat Transfer with Ferroelectric Materials
Radiative heat transfer at small separations can be enhanced by orders of magnitude via the use of surface phonon polariton or plasmon polariton waves. This enhancement has potential applications in different devices, such as thermal emitters, thermal rectifiers, thermophotovoltaic and thermoelectric energy conversion systems. In this thesis, the author explores the tunable optical properties o...
متن کاملNonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement.
Metal oxide semiconductor nanocrystals (NCs) exhibit localized surface plasmon resonances (LSPRs) tunable within the infrared (IR) region of the electromagnetic spectrum by vacancy or impurity doping. Although a variety of these NCs have been produced using colloidal synthesis methods, incorporation and activation of dopants in the liquid phase has often been challenging. Herein, using Al-doped...
متن کاملPlasmonic behavior of III-V semiconductors in far-infrared and terahertz range
Background: In this article, III-V semiconductors are proposed as materials for far-infrared and terahertz plasmonic applications. We suggest criteria to estimate appropriate spectral range for each material including tuning by fine doping and magnetic field. Methods: Several single-crystal wafer samples (n,p-doped GaAs, n-doped InP, and n,p-doped and undoped InSb) are characterized using refle...
متن کاملLong-range surface plasmon polaritons at THz frequencies in thin semiconductor layers
We present a theoretical investigation of THz long-range surface plasmon polaritons propagating on thin layers of InSb. The metallic behavior of doped semiconductors at THz frequencies allows the excitation of surface plasmon polaritons with propagation and confinement lengths that can be actively controlled. This control is achieved by acting on the free carrier density, which can be realized ...
متن کامل