Simulation of atomic force microscopy operation via three-dimensional finite element modelling.

نویسندگان

  • J L Choi
  • D T Gethin
چکیده

Numerical modelling of atomic force microscopy cantilever designs and experiments is presented with the aim of exploring friction mechanisms at the microscale. As a starting point for this work, comparisons between finite element (FE) models and previously reported mathematical models for stiffness calibration of cantilevers (beam and V-shaped) are presented and discrepancies highlighted. A colloid probe (comprising a plain cantilever on which a particle is adhered) model was developed, and its normal and shear interaction were investigated, exploring the response of the probe accounting for inevitable imperfections in its manufacture. The material properties of the cantilever had significant impact on both the normal response and the lateral response. The sensitivity of the mechanical response in both directions was explored and it was found to be higher in terms of normal rather than lateral sensitivity. In lateral measurements, generic response stages were identified, comprising a first stage of twisting, followed by lateral bending, and then slipping. This was present in the two cantilever types explored (beam and V-shaped). Additionally, a model was designed to explore the dynamic sensitivity by comparing the simulation of a hysteresis loop with a previously reported experiment, and the results show good agreement in the response pattern. The ability to simulate the scan over an inclined surface representing the flank of an asperity was also demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Simulation of Contact Mechanics of Cancer Cells in Manipulation Based on Atomic Force Microscopy

The theory of contact mechanics deals with stresses and deformations which arise when the surfaces of two solid bodies are brought into contact. In elastic deformation contact occurs over a finite area. A regular method for determining the dimensions of this area is Hertz Contact Model. Appearance of atomic force microscope results in introduction of Contact ...

متن کامل

Modelling and Numerical Simulation of Cutting Stress in End Milling of Titanium Alloy using Carbide Coated Tool

Based on the cutting force theory, the cutting stress in end milling operation was predicted satisfactorily through simulation of using finite element method. The mechanistic force models were introduced in high accuracy force predictions for most applications. The material properties in the simulations were defined based on the cutting force theory, as a function of strain and strain rate wher...

متن کامل

Contact stiffness of finite size subsurface defects for atomic force microscopy: Three-dimensional finite element modeling and experimental verification

We describe a three-dimensional 3D finite element analysis model of the contact between an atomic force microscopy AFM tip and a substrate with finite size subsurface structures. The model can simulate the contact stiffness measured by a scanning AFM tip on the surface of a sample with buried nanoscale structures. In addition to the analytical verification and convergence analysis, we present t...

متن کامل

Investigation into the Curling Intensity of Polyester/Cotton Single Jersey Weft Knitted fabric Using Finite Element Method

Curling of knitted fabrics edges is one of the complicated problems of these structures. Therefore, study and measurement of curling in knitted fabrics is important. In this study, it is tried to model the three-dimensional wale wise curl of the fabric using finite element modelling. In this model the tensions in different parts of a knitted loop due to bending and torsional forces in knitting ...

متن کامل

Finite element simulation of the clinching process of steel sheets and study on influence of anisotropy on the mechanical behavior of joint

This article describes a numerical study on the TOX-clinching process of the steel sheets. In addition, the influence of plastic anisotropy of the material on joining parameters is analyzed by evolution of the joint parameters such as undercut and neck thickness and punch force-displacement curve. Finite element analysis with ABAQUS/CAE-Explicit program is used to simulate two dimensional and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 20 6  شماره 

صفحات  -

تاریخ انتشار 2009