Active Clustering: Robust and Efficient Hierarchical Clustering using Adaptively Selected Similarities
نویسندگان
چکیده
Hierarchical clustering based on pairwise similarities is a common tool used in a broad range of scientific applications. However, in many problems it may be expensive to obtain or compute similarities between the items to be clustered. This paper investigates the hierarchical clustering of N items based on a small subset of pairwise similarities, significantly less than the complete set of N(N − 1)/2 similarities. First, we show that if the intracluster similarities exceed intercluster similarities, then it is possible to correctly determine the hierarchical clustering from as few as 3N logN similarities. We demonstrate this order of magnitude savings in the number of pairwise similarities necessitates sequentially selecting which similarities to obtain in an adaptive fashion, rather than picking them at random. We then propose an active clustering method that is robust to a limited fraction of anomalous similarities, and show how even in the presence of these noisy similarity values we can resolve the hierarchical clustering using only O ( N log N ) pairwise similarities.
منابع مشابه
High-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملHierarchical Clustering using Randomly Selected Similarities
The problem of hierarchical clustering items from pairwise similarities is found across various scientific disciplines, from biology to networking. Often, applications of clustering techniques are limited by the cost of obtaining similarities between pairs of items. While prior work has been developed to reconstruct clustering using a significantly reduced set of pairwise similarities via adapt...
متن کاملخوشهبندی اسناد مبتنی بر آنتولوژی و رویکرد فازی
Data mining, also known as knowledge discovery in database, is the process to discover unknown knowledge from a large amount of data. Text mining is to apply data mining techniques to extract knowledge from unstructured text. Text clustering is one of important techniques of text mining, which is the unsupervised classification of similar documents into different groups. The most important step...
متن کاملRobust Method for E-Maximization and Hierarchical Clustering of Image Classification
We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...
متن کاملارائه یک الگوریتم خوشه بندی برای داده های دسته ای با ترکیب معیارها
Clustering is one of the main techniques in data mining. Clustering is a process that classifies data set into groups. In clustering, the data in a cluster are the closest to each other and the data in two different clusters have the most difference. Clustering algorithms are divided into two categories according to the type of data: Clustering algorithms for numerical data and clustering algor...
متن کامل