Automated delineation of white matter fiber tracts with a multiple region-of-interest approach

نویسندگان

  • Ralph O. Suarez
  • Olivier Commowick
  • Sanjay P. Prabhu
  • Simon K. Warfield
چکیده

White matter fiber bundles of the brain can be delineated by tractography utilizing multiple regions-of-interest (MROI) defined by anatomical landmarks. These MROI can be used to specify regions in which to seed, select, or reject tractography fibers. Manual identification of anatomical MROI enables the delineation of white matter fiber bundles, but requires considerable training to develop expertise, considerable time to carry out and suffers from unwanted inter- and intra-rater variability. In a study of 20 healthy volunteers, we compared three methodologies for automated delineation of the white matter fiber bundles. Using these methodologies, fiber bundle MROI for each volunteer were automatically generated. We assessed three strategies for inferring the automatic MROI utilizing nonrigid alignment of reference images and projection of template MROI. We assessed the bundle delineation error associated with alignment utilizing T1-weighted MRI, fractional anisotropy images, and full tensor images. We confirmed the smallest delineation error was achieved using the full tensor images. We then assessed three projection strategies for automatic determination of MROI in each volunteer. Quantitative comparisons were made using the root-mean-squared error observed between streamline density images constructed from fiber bundles identified automatically and by manually drawn MROI in the same subjects. We demonstrate that a multiple template consensus label fusion algorithm generated fiber bundles most consistent with the manual reference standard.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated Detection of White Matter Fiber Tracts

White matter (WM) fiber bundles of the brain can be delineated by diffusion tractography utilizing anatomical regions-of-interest (ROI). These ROIs can specify seed regions in which tract generation algorithms are initiated. Interactive identification of such anatomical ROIs enables the detection of the major WM fiber tracts, but suffers from inter-rater and intra-rater variability, and is time...

متن کامل

Automated fiber tracking of human brain white matter using diffusion tensor imaging

Reconstruction of white matter tracts based on diffusion tensor imaging (DTI) is currently widely used in clinical research. This reconstruction allows us to identify coordinates of specific white matter tracts and to investigate their anatomy. Fiber reconstruction, however, relies on manual identification of anatomical landmarks of a tract of interest, which is based on subjective judgment and...

متن کامل

Application of automated fiber tract identification and Restriction Spectrum Imaging to study microstructural changes in white matter tracts associated with temporal lobe epilepsy

Figure 2. Effect sizes (Cohen’s d) for fiber tract ROI differences in tensor FA and FODL2 measures between controls and LTLE or RTLE patients. Asterisks indicate p<0.01, one-way ANCOVA between the three groups separately for each fiber, with age as regressor. Application of automated fiber tract identification and Restriction Spectrum Imaging to study microstructural changes in white matter tra...

متن کامل

The Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery

Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...

متن کامل

Automated Atlas-Based Clustering of White Matter Fiber Tracts from DTMRI

A new framework is presented for clustering fiber tracts into anatomically known bundles. This work is motivated by medical applications in which variation analysis of known bundles of fiber tracts in the human brain is desired. To include the anatomical knowledge in the clustering, we invoke an atlas of fiber tracts, labeled by the number of bundles of interest. In this work, we construct such...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 59 4  شماره 

صفحات  -

تاریخ انتشار 2012