Eigenvalue Separation in Some Random Matrix Models
نویسندگان
چکیده
The eigenvalue density for members of the Gaussian orthogonal and unitary ensembles follows the Wigner semi-circle law. If the Gaussian entries are all shifted by a constant amount c/(2N)1/2, where N is the size of the matrix, in the large N limit a single eigenvalue will separate from the support of the Wigner semi-circle provided c > 1. In this study, using an asymptotic analysis of the secular equation for the eigenvalue condition, we compare this effect to analogous effects occurring in general variance Wishart matrices and matrices from the shifted mean chiral ensemble. We undertake an analogous comparative study of eigenvalue separation properties when the size of the matrices are fixed and c → ∞, and higher rank analogues of this setting. This is done using exact expressions for eigenvalue probability densities in terms of generalized hypergeometric functions, and using the interpretation of the latter as a Green function in the Dyson Brownian motion model. For the shifted mean Gaussian unitary ensemble and its analogues an alternative approach is to use exact expressions for the correlation functions in terms of classical orthogonal polynomials and associated multiple generalizations. By using these exact expressions to compute and plot the eigenvalue density, illustrations of the various eigenvalue separation effects are obtained.
منابع مشابه
APPLICATION OF THE RANDOM MATRIX THEORY ON THE CROSS-CORRELATION OF STOCK PRICES
The analysis of cross-correlations is extensively applied for understanding of interconnections in stock markets. Variety of methods are used in order to search stock cross-correlations including the Random Matrix Theory (RMT), the Principal Component Analysis (PCA) and the Hierachical Structures. In this work, we analyze cross-crrelations between price fluctuations of 20 company stocks...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملParity Effects in Eigenvalue Correlators, Parametric and Crossover Correlators in Random Matrix Models: Application to Mesoscopic systems
This paper summarizes some work I’ve been doing on eigenvalue correlators of Random Matrix Models which show some interesting behaviour. First we consider matrix models with gaps in there spectrum or density of eigenvalues. The density-density correlators of these models depend on whether N, where N is the size of the matrix, takes even or odd values. The fact that this dependence persists in t...
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملThe disc separation and the eigenvalue distribution of the Schur complement of nonstrictly diagonally dominant matrices
The result on the Geršgorin disc separation from the origin for strictly diagonally dominant matrices and their Schur complements in (Liu and Zhang in SIAM J. Matrix Anal. Appl. 27(3):665-674, 2005) is extended to nonstrictly diagonally dominant matrices and their Schur complements, showing that under some conditions the separation of the Schur complement of a nonstrictly diagonally dominant ma...
متن کامل