Cellular endocytosis and gene delivery.
نویسندگان
چکیده
Endocytosis is the process by which cells take up macromolecules from the surrounding medium. The best-characterized process is the so-called clathrin-dependent endocytosis, although much is also currently known about clathrin-independent endocytic processes such as those involving caveolae and lipid rafts. An understanding of endocytosis and the cellular trafficking that occurs thereafter has a great deal of relevance to current molecular medicine. Gene therapy, which is presently being investigated for its therapeutic potential in treating immunodeficiency and metabolic diseases, cancer and heart disease, employs a variety of viral and nonviral vectors, which can be delivered to the target cells of the body and are subsequently endocytosed and dissembled. A variety of vectors can be used to deliver genes to organs in vivo or cells ex vivo. Various routes of vector delivery have been investigated. The mechanisms by which vectors such as adenoviruses, adeno-associated viruses, retroviruses and liposomes enter the cell are increasingly being investigated as the effort to increase the efficiency of gene therapy continues. This review focuses on mechanisms of endocytosis and how they relate to the internal trafficking of viral and nonviral vectors in gene therapy.
منابع مشابه
Modulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملModulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملBarriers to liposomal gene delivery: from application site to the target
AbstractGene therapy is a therapeutic approach to deliver genetic material into cells to alter their function in entire organism. One promising form of gene delivery system (DDS) is liposomes. The success of liposome-mediated gene delivery is a multifactorial issue and well-designed liposomal systems might lead to optimized gene transfection particularly in vivo. Liposomal gene delivery systems...
متن کاملBarriers to liposomal gene delivery: from application site to the target
AbstractGene therapy is a therapeutic approach to deliver genetic material into cells to alter their function in entire organism. One promising form of gene delivery system (DDS) is liposomes. The success of liposome-mediated gene delivery is a multifactorial issue and well-designed liposomal systems might lead to optimized gene transfection particularly in vivo. Liposomal gene delivery systems...
متن کاملAn efficient method for in vitro gene delivery via regulation of cellular endocytosis pathway
Transfection efficiency was the primary goal for in vitro gene delivery mediated by nonviral gene carriers. Here, we report a modified gene transfection method that could greatly increase the efficiency of, and accelerate the process mediated by, 25 kDa branched polyethyleneimine and Lipofectamine™ 2000 in a broad range of cell strains, including tumor, normal, primary, and embryonic stem cells...
متن کاملNon-viral gene delivery via membrane-penetrating, mannose-targeting supramolecular self-assembled nanocomplexes.
Supramolecular self-assembled nanocomplexes (SSANs) capable of mannose receptor-mediated endocytosis and permeable to cellular and endosomal membranes are developed via the assembly of multiple rationally designed, function-specific materials. As a unique non-viral gene delivery vector, SSANs outperform commercial transfection reagents, including LPF2000, PEI, and jetPEI, by up to 2 orders of m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular medicine
دوره 16 5-6 شماره
صفحات -
تاریخ انتشار 2010