A note on free pro-p-extensions of algebraic number fields

نویسنده

  • MASAKAZU YAMAGISHI
چکیده

For an algebraic number field k and a prime p, define the number p to be the maximal number d such that there exists a Galois extension of k whose Galois group is a free pro-p-group of rank d. The Leopoldt conjecture implies 1~ p ~ r2 +1, (r2 denotes the number of complex places of k). Some examples of k and p with 03C1 = r2 + 1 have been known so far. In this note, the invariant 03C1 is studied, and among other things some examples with p r2 + 1 are given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on semi-regular locales

Semi-regular locales are extensions of the classical semiregular spaces. We investigate the conditions such that semi-regularization is a functor. We also investigate the conditions such that semi-regularization is a reflection or coreflection.

متن کامل

A Subgroup Theorem for Free Products of Pro-Finite Groups

The notion of a free product of pro-finite groups has some important applications in the theory of algebraic number fields (see [3]). In this connection, it is interesting to get some knowledge about the subgroups of such a free product. The aim of this paper is to show a theorem for the open subgroups of a free pro-finite product, which is an analog of Kurosh’s wellknown subgroup theorem for t...

متن کامل

A note on the Roman domatic number of a digraph

Roman dominating function} on a digraph $D$ with vertex set $V(D)$ is a labeling$fcolon V(D)to {0, 1, 2}$such that every vertex with label $0$ has an in-neighbor with label $2$. A set ${f_1,f_2,ldots,f_d}$ ofRoman dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vin V(D)$,is called a {em Roman dominating family} (of functions) on $D$....

متن کامل

Notes on Introductory Algebraic Number Theory

This paper introduces the basic results of Algebraic Number Theory. Accordingly, having established the existence of integral bases and the result that ideals in Dedekind domains can be uniquely decomposed into prime ideals, we then give the relation between ramification index, residue class degree and the degree of the extension. Moreover, we also demonstrate the connection between the decompo...

متن کامل

Math 806 Notes on Galois Theory

3 Extensions of rings and fields 14 3.1 Symmetric polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Integral ring extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Prime ideals in Z[x]: elementary classification . . . . . . . . . . . . . . . . . . . . . . 19 3.4 The spectrum of a commutative ring . . . . . . . . . . . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017