Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst

نویسندگان

  • Karen Leus
  • Jolien Dendooven
  • Norini Tahir
  • Ranjith K. Ramachandran
  • Maria Meledina
  • Stuart Turner
  • Gustaaf Van Tendeloo
  • Jan L. Goeman
  • Johan Van der Eycken
  • Christophe Detavernier
  • Pascal Van Der Voort
چکیده

We present the in situ synthesis of Pt nanoparticles within MIL-101-Cr (MIL = Materials Institute Lavoisier) by means of atomic layer deposition (ALD). The obtained Pt@MIL-101 materials were characterized by means of N₂ adsorption and X-ray powder diffraction (XRPD) measurements, showing that the structure of the metal organic framework was well preserved during the ALD deposition. X-ray fluorescence (XRF) and transmission electron microscopy (TEM) analysis confirmed the deposition of highly dispersed Pt nanoparticles with sizes determined by the MIL-101-Cr pore sizes and with an increased Pt loading for an increasing number of ALD cycles. The Pt@MIL-101 material was examined as catalyst in the hydrogenation of different linear and cyclic olefins at room temperature, showing full conversion for each substrate. Moreover, even under solvent free conditions, full conversion of the substrate was observed. A high concentration test has been performed showing that the Pt@MIL-101 is stable for a long reaction time without loss of activity, crystallinity and with very low Pt leaching.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rhodium nanoparticles entrapped in boehmite nanofibers: recyclable catalyst for arene hydrogenation under mild conditions.

A new recyclable rhodium catalyst was synthesized by a simple procedure from readily available reagents, which showed high activities in the hydrogenation of various arenes under 1 atm H2 at room temperature.

متن کامل

Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions.

Metal-support interfaces play a prominent role in heterogeneous catalysis. However, tailoring the metal-support interfaces to realize full utilization remains a major challenge. In this work, we propose a graceful strategy to maximize the metal-oxide interfaces by coating confined nanoparticles with an ultrathin oxide layer. This is achieved by sequential deposition of ultrathin Al2 O3 coats, P...

متن کامل

DSA Preparation of Pt NPs @MIL-53(Fe) and Its Catalytic Behaviors

In this work, the effects of preparation methods such as CE oven, microwave irradiation, and ultrasound on the morphology, particle size and crystallinity of MIL-53(Fe) are firstly investigated. Furthermore, the methods are utilized to prepare Pt NPs@MIL-53(Fe). As a result, well-defined Pt NPs@MIL-53(Fe) prepared by microwave irradiation exhibits uniformed morphology, hig...

متن کامل

MOFs as multifunctional catalysts: one-pot synthesis of menthol from citronellal over a bifunctional MIL-101 catalyst.

A bifunctional MOF catalyst containing coordinatively unsaturated Cr(3+) sites and palladium nanoparticles (Pd@MIL-101) has been used for the cyclization of citronellal to isopulegol and for the one-pot tandem isomerization/hydrogenation of citronellal to menthol. The MOF was found to be stable under the reaction conditions used, and the results obtained indicate that the performance of this bi...

متن کامل

CdO nanoparticles as an efficient, mild and recyclable catalyst for the synthesis of 2-aryl benzoxazole derivatives by grinding method

CdO nanoparticles efficiently catalyzes the condensation of aromatic aldehydes with 2-aminophenol at room temperature to afford 2-aryl benzoxazole derivatives by grinding method. The reactions proceed under heterogeneous and mild conditions to provide 2-aryl benzoxazoles in excellent yields (87-97 %) with high purity under solvent free condition. The reaction requires short time (5-23 minutes) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016