Convergence of a Singular Euler-poisson Approximation of the Incompressible Navier-stokes Equations
نویسنده
چکیده
In this note, we rigorously justify a singular approximation of the incompressible Navier-Stokes equations. Our approximation combines two classical approximations of the incompressible Euler equations: a standard relaxation approximation, but with a diffusive scaling, and the Euler-Poisson equations in the quasineutral regime.
منابع مشابه
The Quasineutral Limit of Compressible Navier-stokes-poisson System with Heat Conductivity and General Initial Data
The quasineutral limit of compressible Navier-Stokes-Poisson system with heat conductivity and general (ill-prepared) initial data is rigorously proved in this paper. It is proved that, as the Debye length tends to zero, the solution of the compressible Navier-Stokes-Poisson system converges strongly to the strong solution of the incompressible Navier-Stokes equations plus a term of fast singul...
متن کاملConvergence of a Navier-stokes-poisson Approximation of the Incompressible Navier-stokes Equations
This paper studies the quasi-neutral limit of pressureless Navier-Stokes-Poisson equations in plasma physics in the torus T. For well prepared initial data the convergence of solutions of compressible Navier-Stokes-Poisson equations to the solutions of incompressible Navier-Stokes equations is justified rigorously by using the curl-div decomposition of the gradient. And a priori estimates with ...
متن کاملInviscid Incompressible Limits of the Full Navier–Stokes–Fourier System
We consider the full Navier-Stokes-Fourier system in the singular limit for the small Mach and large Reynolds and Péclet numbers, with ill prepared initial data on R 3. The Euler-Boussinesq approximation is identified as the limit system.
متن کاملIncompressible, Inviscid Limit of the Compressible Navier–stokes System
– We prove some asymptotic results concerning global (weak) solutions of compressible isentropic Navier–Stokes equations. More precisely, we establish the convergence towards solutions of incompressible Euler equations, as the density becomes constant, the Mach number goes to 0 and the Reynolds number goes to infinity. 2001 Éditions scientifiques et médicales Elsevier SAS RÉSUMÉ. – Nous prouv...
متن کاملInviscid limit for vortex patches in a bounded domain
Abstract: In this paper, we consider the inviscid limit of the incompressible Navier-Stokes equations in a smooth, bounded and simply connected domain Ω ⊂ R, d = 2, 3. We prove that for a vortex patch initial data the weak Leray solutions of the incompressible Navier-Stokes equations with Navier boundary conditions will converge (locally in time for d = 3 and globally in time for d = 2) to a vo...
متن کامل