On the Use of Taxonomies for Representing Case Features and Local Similarity Measures
نویسنده
چکیده
For defining attribute types to be used in the case representation, taxonomies occur quite often. The symbolic values at any node of the taxonomy tree are used as attribute values in a case or a query. A taxonomy type represents a relationship between the symbols through their position within the taxonomy-tree which expresses knowledge about the similarity between the symbols. This paper analyzes several situations in which taxonomies are used in different ways and proposes a systematic way of specifying local similarity measures for taxonomy types. The proposed similarity measures have a clear semantics and are easy to compute at runtime.
منابع مشابه
A comprehensive experimental comparison of the aggregation techniques for face recognition
In face recognition, one of the most important problems to tackle is a large amount of data and the redundancy of information contained in facial images. There are numerous approaches attempting to reduce this redundancy. One of them is information aggregation based on the results of classifiers built on selected facial areas being the most salient regions from the point of view of classificati...
متن کاملLink Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملLearning Feature Taxonomies for Case Indexing
Taxonomic case retrieval systems significantly outperform standard conversational case retrieval systems. However, their feature taxonomies, which are the principal reason for their superior performance, must be manually developed. This is a laborious and error prone process. In an earlier paper, we proposed a framework for automatically acquiring features and organizing them into taxonomies to...
متن کاملEvaluation of Similarity Measures for Template Matching
Image matching is a critical process in various photogrammetry, computer vision and remote sensing applications such as image registration, 3D model reconstruction, change detection, image fusion, pattern recognition, autonomous navigation, and digital elevation model (DEM) generation and orientation. The primary goal of the image matching process is to establish the correspondence between two ...
متن کاملA revised Fuzzy - PROMETHEE method , using Fuzzy Distance and Similarity Measures
PROMETHEE refers to a collection of methods of ranking in the field of multi-criteria decision making. These methods are characterized by conceptual simplicity and practical applicability. However, the nature of phenomena involving decision-making in real world leads us to use fuzzy method of preference ranking. The most common criticism on mathematical ranking procedures is that they tend to d...
متن کامل