Groupoid Actions as Quantale Modules * Pedro Resende

نویسنده

  • Pedro Resende
چکیده

For an arbitrary localic étale groupoid G we provide simple descriptions, in terms of modules over the quantale O(G) of the groupoid, of the continuous actions of G, including actions on open maps and sheaves. The category of G-actions is isomorphic to a corresponding category of O(G)-modules, and as a corollary we obtain a new quantale based representation of étendues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groupoid sheaves as Hilbert modules

We provide a new characterization of the notion of sheaf on an étale groupoid G, in terms of a particular kind of Hilbert module on the quantale O(G) of the groupoid. All the theory is developed in the context of the more general class of quantales known as stable quantal frames, of which examples are easy to construct because their category is algebraic. The homomorphisms of our Hilbert module...

متن کامل

Topological Groupoid Quantales

We associate a canonical unital involutive quantale to a topological groupoid. When the groupoid is also étale, this association is compatible with but independent from the theory of localic étale groupoids and their quantales [19] of P. Resende. As a motivating example, we describe the connection between the quantale and the C∗-algebra that both classify Penrose tilings, which was left as an o...

متن کامل

Étale groupoids and their quantales

We establish a close and previously unknown relation between quantales and groupoids, in terms of which the notion of étale groupoid is subsumed in a natural way by that of quantale. In particular, to each étale groupoid, either localic or topological, there is associated a unital involutive quantale. We obtain a bijective correspondence between localic étale groupoids and their quantales, whic...

متن کامل

00 2 Sup - lattice 2 - forms and quantales ∗

A 2-form between two sup-lattices L and R is defined to be a suplattice bimorphism L×R → 2. Such 2-forms are equivalent to Galois connections, and we study them and their relation to quantales, involutive quantales and quantale modules. As examples we describe applications to C*-algebras.

متن کامل

00 3 Sup - lattice 2 - forms and quantales ∗

A 2-form between two sup-lattices L and R is defined to be a suplattice bimorphism L×R → 2. Such 2-forms are equivalent to Galois connections, and we study them and their relation to quantales, involutive quantales and quantale modules. As examples we describe applications to C*-algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008