Electronic Properties of Metallic Nanoclusters on Semiconductor Surfaces: Implications for Nanoelectronic Device Applications

نویسندگان

  • Takhee Lee
  • Jia Liu
  • Nien-Po Chen
  • R. P. Andres
  • D. B. Janes
  • R. Reifenberger
چکیده

We review current research on the electronic properties of nanoscale metallic islands and clusters deposited on semiconductor substrates. Reported results for a number of nanoscale metal-semiconductor systems are summarized in terms of their fabrication and characterization. In addition to the issues faced in large-area metal-semiconductor systems, nano-systems present unique challenges in both the realization of well-controlled interfaces at the nanoscale and the ability to adequately characterize their electrical properties. Imaging by scanning tunneling microscopy as well as electrical characterization by current-voltage spectroscopy enable the study of the electrical properties of nanoclusters/semiconductor systems at the nanoscale. As an example of the low-resistance interfaces that can be realized, low-resistance nanocontacts consisting of metal nanoclusters deposited on specially designed ohmic contact structures are described. To illustrate a possible path to employing metal/semiconductor nanostructures in nanoelectronic applications, we also describe the fabrication and performance of uniform 2-D arrays of such metallic clusters on semiconductor substrates. Using self-assembly techniques involving conjugated organic tether molecules, arrays of nanoclusters have been formed in both unpatterned and patterned regions on semiconductor surfaces. Imaging and electrical characterization via scanning tunneling microscopy/spectroscopy indicate that high quality local ordering has been achieved within the arrays and that the clusters are electronically coupled to the semiconductor substrate via the low-resistance metal/semiconductor

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoelectronic device applications of a chemically stable GaAs structure

We report on nanoelectronic device applications of a nonalloyed contact structure which utilizes a surface layer of low-temperature grown GaAs as a chemically stable surface. In contrast to typical ex situ ohmic contacts formed on n-type semiconductors such as GaAs, this approach can provide uniform contact interfaces which are essentially planar injectors, making them suitable as contacts to s...

متن کامل

Interface and contact structures for nanoelectronic devices using assemblies of metallic nanoclusters, conjugated organic molecules and chemically stable semiconductor layers

Self-assembly (‘building’) approaches can provide well-controlled structures and assemblies at the nanometer scale, but typically do not provide the specific structures or functionalities required for robust nanoelectronic circuits. One approach to realize high-density nanoelectronic circuits is to combine self-assembly techniques with more conventional semiconductor device and circuit approach...

متن کامل

Gold/Molecule/p(+) Si Devices: Variable Temperature Electronic Transport

Although a considerable amount of experimental and theoretical work has been devoted to nanoelectronic systems with molecular components, relatively little work has been done on molecular electronic devices on technologically relevant substrates such as silicon. Metal–molecule–semiconductor (MMS) studies have generally focused on structures in which the semiconductor barrier is dominant or trea...

متن کامل

Size Evolution Study of the Electronic and Magnetic Properties of MgO Nanoclusters

Magnesium oxide nanoclusters have attracted much attention due to their potential applications to catalysis and novel optoelectronic materials. In the present study, we have studied the electronic and magnetic properties of the stoichiometric magnesium oxide nanoclusters (MgO)n  for n = 2-20. Although the binding energy increases with the size of the cluster, it  re...

متن کامل

Strain induced semiconductor nanotubes: from formation process to device applications

Semiconductor nanotubes (SNTs) represent a new class of nanotechnology building blocks. They are formed by a combination of bottom–up and top–down approaches, using strain induced self-rolling mechanism from epitaxially grown heterojunction films. This review summarizes several aspects of this emerging field, including the SNT formation process, its dependence on crystal orientation, strain dir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001