Multistage isoelectric focusing in a polymeric microfluidic chip.

نویسندگان

  • Huanchun Cui
  • Keisuke Horiuchi
  • Prashanta Dutta
  • Cornelius F Ivory
چکیده

This paper reports a protocol that improves the resolving power of isoelectric focusing (IEF) in a polymeric microfluidic chip. This method couples several stages of IEF in series by first focusing proteins in a straight channel using broad-range ampholytes and then refocusing segments of the first channel into secondary channels that branch from the first one at T-junctions. Experiments demonstrate that several fluorescent proteins that had focused within a segment of the straight channel in the first stage were refocused at significantly higher resolution due to the shallower pH gradient and higher electrical field gradient. Two variants of green fluorescent protein from the second-stage IEF fractionation were further separated in a third stage. Three stages of IEF were completed in less than 25 min at electric field strengths ranging from 50 to 214 V/cm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Droplet-based in situ compartmentalization of chemically separated components after isoelectric focusing in a Slipchip.

Isoelectric focusing (IEF) is a powerful and widely used technique for protein separation and purification. There are many embodiments of microscale IEF that use capillary or microfluidic chips for the analysis of small sample volumes. Nevertheless, collecting the separated sample volumes without causing remixing remains a challenge. Herein, we describe a microfluidic Slipchip device that is ab...

متن کامل

Microchip countercurrent electroseparation.

We report a microchip-based method for separating charged molecules according to electrophoretic mobility. The method is based on opposed electroosmotic, electrophoretic and convective forces. Similar to isoelectric focusing, solute can be accumulated into stationary zones, but without use of ampholytes. The method of "microchip countercurrent electroseparation" described here has potential app...

متن کامل

Microfluidic assembly of multistage porous silicon-lipid vesicles for controlled drug release.

A reliable microfluidic platform for the generation of stable and monodisperse multistage drug delivery systems is reported. A glass-capillary flow-focusing droplet generation device was used to encapsulate thermally hydrocarbonized porous silicon (PSi) microparticles into the aqueous cores of double emulsion drops, yielding the formation of a multistage PSi-lipid vesicle. This composite system...

متن کامل

Fully integrated PDMS/SU-8/quartz microfluidic chip with a novel macroporous poly dimethylsiloxane (PDMS) membrane for isoelectric focusing of proteins using whole-channel imaging detection.

A fully integrated polydimethylsiloxane (PDMS)/modified PDMS membrane/SU-8/quartz hybrid chip was developed for protein separation using isoelectric focusing (IEF) mechanism coupled with whole-channel imaging detection (WCID) method. This microfluidic chip integrates three components into one single chip: (i) modified PDMS membranes for separating electrolytes in the reservoirs from the sample ...

متن کامل

Microfluidic 2-D PAGE using multifunctional in situ polyacrylamide gels and discontinuous buffers.

A two-dimensional microfluidic system is presented for intact protein separations combining isoelectric focusing (IEF) and sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) employing in situ photopolymerized polyacrylamide (PAAm) gels. The PAAm gels are used for multiple functions. In addition to serving as a highly-resolving separation medium for gel electrophoresis, discr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 77 24  شماره 

صفحات  -

تاریخ انتشار 2005