Scalable real-time classification of data streams with concept drift
نویسندگان
چکیده
Inducing adaptive predictive models in real-time from high throughput data streams is one of the most challenging areas of Big Data Analytics. The fact that data streams may contain concept drifts (changes of the pattern encoded in the stream over time) and are unbounded, imposes unique challenges in comparison with predictive data mining from batch data. Several real-time predictive data stream algorithms exist, however, most approaches are not naturally parallel and thus limited in their scalability. This paper highlights the Micro-Cluster Nearest Neighbour (MC-NN) data stream classifier. MC-NN is based on statistical summaries of the data stream and a nearest neighbour approach, which makes MCNN naturally parallel. In its serial version MC-NN is able to handle data streams, the data does not need to reside in memory and is processed incrementally. MC-NN is also able to adapt to concept drifts. This paper provides an empirical study on the serial algorithm’s speed, adaptivity and accuracy. Furthermore, this paper discusses the new parallel implementation of MC-NN, its parallel properties and provides an empirical scalability study. © 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
منابع مشابه
Detecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملFast Adaptive Real-Time Classification for Data Streams with Concept Drift
An important application of Big Data Analytics is the realtime analysis of streaming data. Streaming data imposes unique challenges to data mining algorithms, such as concept drifts, the need to analyse the data on the fly due to unbounded data streams and scalable algorithms due to potentially high throughput of data. Real-time classification algorithms that are adaptive to concept drifts and ...
متن کاملLearning from Data Streams with Concept Drift
Increasing access to incredibly large, nonstationary datasets and corresponding demands to analyse these data has led to the development of new online algorithms for performing machine learning on data streams. An important feature of real-world data streams is " concept drift, " whereby the distributions underlying the data can change arbitrarily over time. The presence of concept drift in a d...
متن کاملA fast incremental extreme learning machine algorithm for data streams classification
Data streams classification is an important approach to get useful knowledge from massive and dynamic data. Because of concept drift, traditional data mining techniques cannot be directly applied in data streams environment. Extreme learning machine (ELM) is a single hidden layer feedforward neural network (SLFN), comparing with the traditional neural network (e.g. BP network), ELM has a faster...
متن کاملTowards Online Concept Drift Detection with Feature Selection for Data Stream Classification
Data Streams are unbounded, sequential data instances that are generated very rapidly. The storage, querying and mining of such rapid flows of data is computationally very challenging. Data Stream Mining (DSM) is concerned with the mining of such data streams in real-time using techniques that require only one pass through the data. DSM techniques need to be adaptive to reflect changes of the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Future Generation Comp. Syst.
دوره 75 شماره
صفحات -
تاریخ انتشار 2017