Contribution of supragranular layers to sensory processing and plasticity in adult rat barrel cortex.
نویسندگان
چکیده
Contribution of supragranular layers to sensory processing and plasticity in adult rat barrel cortex. J. Neurophysiol. 80: 3261-3271, 1998. In mature rat primary somatic sensory cortical area (SI) barrel field cortex, the thalamic-recipient granular layer IV neurons project especially densely to layers I, II, III, and IV. A prior study showed that cells in the supragranular layers are the fastest to change their response properties to novel changes in sensory inputs. Here we examine the effect of removing supragranular circuitry on the responsiveness and synaptic plasticity of cells in the remaining layers. To remove the layer II + III (supragranular) neurons from the circuitry of barrel field cortex, N-methyl--aspartate (NMDA) was applied to the exposed dura over the barrel cortex, which destroys those neurons by excitotoxicity without detectable damage to blood vessels or axons of passage. Fifteen days after NMDA treatment, the first responsive cells encountered were 400-430 micrometers below the pial surface. In separate cases triphenyltetrazolium chloride (TTC), a vital dye taken up by living cells, was absent from the lesion area. Cytochrome oxidase (CO) activity was absent in the first few tangential sections through the barrel field in all cases before arriving at the CO-dense barrel domains. These findings indicate that the lesions were quite consistent from animal to animal. Controls consisted of applying vehicle without NMDA under similar conditions. Responses of D2 barrel cells were assessed for spontaneous activity and level of response to stimulation of the principal D2 whisker and four surround whiskers D1, D3, C2, and E2. In two additional groups of animals treated in the same way, sensory plasticity was assessed by trimming all whiskers except D2 and either D1 or D3 (called Dpaired) for 7 days before recording cortical responses. Such whisker pairing normally potentiates D2 barrel cell responses to stimulation of the two intact whiskers (D2 + Dpaired). After NMDA lesions, cortical cells still responded to all whiskers tested. Cells in lesioned cortex showed reduced response amplitude compared with sham-operated controls to all D-row whiskers. In-arc surround whisker (C2 or E2) responses were normal. Spontaneous activity did not change significantly in any remaining layer at the time tested. Modal latencies to stimulation of principal D2 or surround D1 or D3 whiskers showed no significant change after lesioning. These findings indicate that there is a reasonable preservation of the response properties of layer IV, V, VI neurons after removal of layer II-III neurons in this way. Whisker pairing plasticity in layer IV-VI D2 barrel column neurons occurred in both lesioned and sham animals but was reduced significantly in lesioned animals compared with controls. The response bias generated by whisker trimming (Dpaired/Dcut + Dpaired ratio) was less pronounced in NMDA-lesioned than sham-lesioned animals. Proportionately fewer neurons in layer IV (52 vs. 64%) and in the infragranular layers (55 vs. 68%) exhibited a clear response bias to paired whiskers. We conclude that receptive-field plasticity can occur in layers IV-VI of barrel cortex in the absence of the supragranular layer circuitry. However, layer I-III circuitry does play a role in normal receptive-field generation and is required for the full expression of whisker pairing plasticity in granular and infragranular layer cells.
منابع مشابه
Effect of Norepinephrine depletion on induction of experience dependent plasticity in male rat barrel cortex
Introduction: Barrel cortex of rats is a part of somatosensory cortex, which receives information from facial whiskers. Vibrisectomy by sensory deprivation leads to some changes in the barrel cortex, which have been known as experience dependent plasticity. On the other hand, Norepinephrine (NE) and locus coeruleus, which is the main source of NE, influenced response properties of cortical bar...
متن کاملExperience-dependent plasticity of adult rat S1 cortex requires local NMDA receptor activation.
The effect of blocking NMDA glutamate receptors in adult rat cortex on experience-dependent synaptic plasticity of barrel cortex neurons was studied by infusing D-AP5 with an osmotic minipump over barrel cortex for 5 d of novel sensory experience. In acute pilot studies, 500 microM D-AP5 was shown to specifically suppress NMDA receptor (NMDAR)-dependent responses of single cells in cortical lay...
متن کاملExperience-dependent plasticity is impaired in adult rat barrel cortex after whiskers are unused in early postnatal life.
The capacity of adult barrel cortex to show experience-dependent plasticity after early restricted neonatal sensory deprivation was analyzed in barrel field cortex neurons. Selective sensory deprivation was induced by trimming two whiskers from postnatal day 0 (P0) to P21, namely, the principal D2 whisker plus one adjacent surround whisker (D3). At maturity (P90), responses of supragranular (la...
متن کاملاثر تحریک الکتریکی هسته رافه خلفی بر پاسخ برانگیخته نورونهای لایه IV و V قشر بارل (بشکهای) در موش صحرایی
Effect of the Dorsal Raphe Nucleus Electrical Stimulation on Evoked Response of the IV Layers and V Barrel Cortical Neurons in Rat M.R Afarinesh MSc , V. Sheibani PhD , R. Farazifard MSc 1, M. Abasnegad PhD , A. Shamsi zadeh MSc Received: 17/09/06 Sent for Revision: 13/03/07 Received Revised Manuscript: 13/06/07 Accepted: 27/06/07 Background and Objective: Seretonergic pathway is one of the neu...
متن کاملComputational study of experience-dependent plasticity in adult rat cortical barrel-column.
We model experience-dependent plasticity in the adult rat S1 cortical representation of the whiskers (the barrel cortex) which has been produced by trimming all whiskers on one side of the snout except two. This manipulation alters the pattern of afferent sensory activity while avoiding any direct nerve damage. Our simplified model circuitry represents multiple cortical layers and inhibitory ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 80 6 شماره
صفحات -
تاریخ انتشار 1998