CP-673451, a platelet-derived growth-factor receptor inhibitor, suppresses lung cancer cell proliferation and migration
نویسندگان
چکیده
Lung cancer is the leading cause of cancer mortality in the world. Although some advances in lung cancer therapy have been made, patient survival is still poor. The platelet-derived growth factor receptors (PDGFRs) and their ligands play critical roles in the regulation of many cancer cell processes, including cell survival and cell motility. Herein, we investigate the anticancer activities of CP-673451, a potent selective inhibitor of PDGFR kinase, in non-small-cell lung cancer (NSCLC) therapy. We found that CP-673451 is effective at suppressing cell viability, inducing cell apoptosis, and inhibiting cell migration and invasion by suppressing the PDGFR downstream signaling pathway in NSCLC cells. Furthermore, CP-673451 is effective at suppressing NSCLC tumor growth in vivo. In summary, our studies suggest that CP-673451 might be a promising therapeutic compound for NSCLC.
منابع مشابه
Pharmacological characterization of CP-547,632, a novel vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for cancer therapy.
Signaling through vascular endothelial growth factor (VEGF) receptors (VEGFRs) is a key pathway initiating endothelial cell proliferation and migration resulting in angiogenesis, a requirement for human tumor growth and metastasis. Abrogation of signaling through VEGFR by a variety of approaches has been demonstrated to inhibit angiogenesis and tumor growth. Small molecule inhibitors of VEGFR t...
متن کاملImatinib blocks migration and invasion of medulloblastoma cells by concurrently inhibiting activation of platelet-derived growth factor receptor and transactivation of epidermal growth factor receptor.
Platelet-derived growth factor (PDGF) receptor (PDGFR) expression correlates with metastatic medulloblastoma. PDGF stimulation of medulloblastoma cells phosphorylates extracellular signal-regulated kinase (ERK) and promotes migration. We sought to determine whether blocking PDGFR activity effectively inhibits signaling required for medulloblastoma cell migration and invasion. DAOY and D556 huma...
متن کاملNeprilysin regulates pulmonary artery smooth muscle cell phenotype through a platelet-derived growth factor receptor-dependent mechanism.
Reduced neprilysin (NEP), a cell surface metallopeptidase, which cleaves and inactivates proinflammatory and vasoactive peptides, predisposes the lung vasculature to exaggerated remodeling in response to hypoxia. We hypothesize that loss of NEP in pulmonary artery smooth muscle cells results in increased migration and proliferation. Pulmonary artery smooth muscle cells isolated from NEP(-/-) mi...
متن کاملKnockdown of SCARA5 inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and migration through suppression of the PDGF signaling pathway.
Vascular smooth muscle cell (VSMC) proliferation and migration are critical in the progression of atherosclerosis and can be induced by platelet-derived growth factor (PDGF). Several studies have demonstrated that scavenger receptor class A, member 5 (SCARA5) is important in cancer cell migration and invasion. However, the role of SCARA5 in VSMCs remains to be elucidated in the development of a...
متن کاملTreatment for malignant pleural effusion of human lung adenocarcinoma by inhibition of vascular endothelial growth factor receptor tyrosine kinase phosphorylation.
Malignant pleural effusion (PE) is associated with advanced human lung cancer. We found recently, using a nude mouse model, that vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) is responsible for PE induced by non-small cell human lung carcinoma cells. The purpose of this study was to determine the therapeutic potential of a VEGF/VPF receptor tyrosine kinase phosphory...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2014