Reflections on slide with a twist attacks
نویسندگان
چکیده
Slide attacks use pairs of encryption operations which are slid against each other. Slide with a twist attacks are more sophisticated variants of slide attacks which slide an encryption operation against a decryption operation, and were used in 2000 to attack several cryptosystems, including DESX, the Even-Mansour construction, and Feistel structures with four-round self-similarity. They were further extended in 2012 to the mirror slidex framework, which was used to attack 20-round GOST and several additional variants of the Even-Mansour construction. In this paper, we revisit all the previously published applications of these techniques and show that in almost all cases, the same or better results can be achieved by a simpler attack which is based on the seemingly unrelated idea of exploiting their internal fixed points. The observation that such fixed points can be useful in cryptanalysis had already been pointed out in 2007 by Kara, but all the examples he gave for his reflection attack were based on particular constructions such as Feistel structures or GOST key schedules in which it was easy to explicitly list and count their fixed points. In this paper, we generalize Kara’s reflection attack by using the combinatorial result that random involutions on 2 values are expected to have a surprisingly large number of O(2) fixed points (whereas random permutations are expected to have only O(1) fixed points). This makes it possible to reduce the complexity of the best known attack on additional cryptographic schemes in which it is difficult to explicitly characterize and count their internal fixed points.
منابع مشابه
Advanced Slide Attacks
Recently a powerful cryptanalytic tool—the slide attack— was introduced [3]. Slide attacks are very successful in breaking iterative ciphers with a high degree of self-similarity and even more surprisingly are independent of the number of rounds of a cipher. In this paper we extend the applicability of slide attacks to a larger class of ciphers. We find very efficient knownand chosen-text attac...
متن کاملSimulation of a New Process Design to Fabricate a Rectangular Twist Waveguide Using Extrusion and a Twist Die
The aim of the present study is to determine the feasibility of making a rectangular twist waveguide used to rotate electromagnetic waves. For this purpose, the process of fabricating an aluminum rectangular twist waveguide was simulated by making use of finite element method and Deform software. The optimum length and angle of the twist die for manufacturing a twist waveguide with inner cross ...
متن کاملImproved Slide Attacks
The slide attack is applicable to ciphers that can be represented as an iterative application of the same keyed permutation. The slide attack leverages simple attacks on the keyed permutation to more complicated (and time consuming) attacks on the entire cipher. In this paper we extend the slide attack by examining the cycle structures of the entire cipher and of the underlying keyed permutatio...
متن کاملSliding Properties of the DES Key Schedule and Potential Extensions to the Slide Attacks
The DES key schedule is linear and yet defeats related-key cryptanalysis and other attacks that exploit weaknesses in key schedules, for example the slide attacks. In this paper we present new interesting key-pairs of the DES that can be used in related-key attacks to produce sliding properties of the full-round DES key schedule. This is a sort of key schedule weakness from a slide attack point...
متن کاملSlide Attacks on a Class of Hash Functions
This paper studies the application of slide attacks to hash functions. Slide attacks have mostly been used for block cipher cryptanalysis. But, as shown in the current paper, they also form a potential threat for hash functions, namely for sponge-function like structures. As it turns out, certain constructions for hash-function-based MACs can be vulnerable to forgery and even to key recovery at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014