Radar rainfall estimates in an alpine environment using inverse hydrological modelling

نویسندگان

  • A. Marx
  • J. Seltmann
چکیده

The quality of hydrological modelling is limited due to the restricted availability of high resolution temporal and spatial input data such as temperature, global radiation, and precipitation. Radar-based rain measurements provide good spatial information. On the other hand, using radar data is accompanied by basic difficulties such as clutter, shielding, variations of Z/R-relationships, beam-resolution and attenuation. Instead of accounting for all errors involved separately, a robust Z/R-relationship is estimated in this study for the short range (up to 40 km distance) using inverse hydrological modelling for a continuous period of three months in summer 2001. River gauge measurements from catchment sizes around 100 km2 are used to estimate areal precipitation and finally Z/R-relationships using a calibrated hydrological model. The study is performed in the alpine Ammer catchment with very short reaction times of the river gauges to rainfall events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Local Area Weather Radar (LAWR) in relation to hydrological modelling – Identification of the pitfalls in using high resolution radar rainfall data

Recent analysis of spatial and temporal resolution of rainfall and the advent of small inexpensive rainfall radars has lead to increased use of radar estimated rainfall as input to hydrological models especially in urban areas. Detailed rainfall measurements have indicated a very high spatial variation of up to 100 % of a distance of less that 200 m over a 3 hour rainfall event [Jensen and Pede...

متن کامل

Radar–rain-gauge rainfall estimation for hydrological applications in small catchments

The accurate evaluation of the precipitation’s time–spatial structure is a critical step for rainfall–runoff modelling. Particularly for small catchments, the variability of rainfall can lead to mismatched results. Large errors in flow evaluation may occur during convective storms, responsible for most of the flash floods in small catchments in the Mediterranean area. During such events, we may...

متن کامل

Modeling Radar Rainfall Estimation Uncertainties: Random Error Model

Precipitation is a major input in hydrological models. Radar rainfall data compared with rain gauge measurements provide higher spatial and temporal resolutions. However, radar data obtained form reflectivity patterns are subject to various errors such as errors in reflectivity-rainfall Z-R relationships, variation in vertical profile of reflectivity, and spatial and temporal sampling among oth...

متن کامل

Representing radar rainfall uncertainty with ensembles based on a time-variant geostatistical error modelling approach

The application of radar quantitative precipitation estimation (QPE) to hydrology and water quality models can be preferred to interpolated rainfall point measurements because of the wide coverage that radars can provide, together with a good spatio-temporal resolutions. Nonetheless, it is often limited by the proneness of radar QPE to a multitude of errors. Although radar errors have been wide...

متن کامل

Distributed hydrological modelling of a heavily glaciated Alpine river basin

A glacier submodel was successfully integrated into the distributed hydrological model WaSiM-ETH to simulate the discharge of a heavily glaciated drainage basin. The glacier submodel comprises a distributed temperature index model including solar radiation to simulate the melt rate of glaciated areas. Meltwater and rainfall are transformed into glacier discharge by using a linear reservoir appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006