Gene expression responses of black spruce (Picea mariana) to global climate change conditions
نویسندگان
چکیده
Global climate change conditions (elevated CO2 and atmospheric temperatures) are subjecting our forests, especially Boreal and temperate forests, to significant abiotic stresses, such as drought. This can affect health, productivity and fitness of our forests. Therefore, it is imperative to understand genomic and eco-physiological responses of forest trees to global climate change. We are addressing this aspect in black spruce (Picea mariana) a transcontinental, ecologically and economically important tree species of the North American Boreal forest. Our objective was to determine gene expression and physiological responses and their inter-relationships in black spruce to elevated CO2, drought and costressed conditions. We have used NGS whole transcriptome sequencing, cDNA-AFLP and qPCR analyses to identify, annotate and characterize genes expressed differentially in response to elevated CO2, drought and combined elevated CO2 and drought conditions in black spruce using the cloned material. Photosynthetic rate and stomatal conductance were measured simultaneously with tissue collection for RNA extraction. Thousands of transcripts (genes) showed differential expression (no expression, up-regulation or down-regulation) in response to elevated CO2, drought and/or their combined conditions, with over 1600 genes from several pathways showing >10-folds gene expression differences between control and treated plants. A number of genes showed 100 to 500 folds up or down regulation in response to elevated CO2, drought or their combined conditions. Responses to each treatment at the gene expression and physiological levels were correlated well among different genotypes. We will present these results which contribute significantly to our understanding of tree’s responses to global climate change.
منابع مشابه
Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests.
Unprecedented rates of climate warming over the past century have resulted in increased forest stress and mortality worldwide. Decreased tree growth in association with increasing temperatures is generally accepted as a signal of temperature-induced drought stress. However, variations in tree growth alone do not reveal the physiological mechanisms behind recent changes in tree growth. Examining...
متن کاملBiophysical and Economic Analysis of Black Spruce Regeneration in Eastern Canada Using Global Climate Model Productivity Outputs
We explore the biophysical potential and economic attractiveness of black spruce (Picea mariana) regeneration in eastern Canada under the high greenhouse gas emission scenario (RCP 8.5) of the Intergovernmental Panel on Climate Change (IPCC). The study integrates net primary productivity and net ecosystem productivity estimates from three major global climate models (GCMs), growth and yield equ...
متن کاملImpacts of fire on non-native plant recruitment in black spruce forests of interior Alaska
Climate change is expected to increase the extent and severity of wildfires throughout the boreal forest. Historically, black spruce (Picea mariana (Mill.) B.S.P.) forests in interior Alaska have been relatively free of non-native species, but the compounding effects of climate change and an altered fire regime could facilitate the expansion of non-native plants. We tested the effects of wildfi...
متن کاملThe Influence of Recent Climate Change on Tree Height Growth Differs with Species and Spatial Environment
Tree growth has been reported to increase in response to recent global climate change in controlled and semi-controlled experiments, but few studies have reported response of tree growth to increased temperature and atmospheric carbon dioxide (CO₂) concentration in natural environments. This study addresses how recent global climate change has affected height growth of trembling aspen (Populus ...
متن کاملMechanisms of Soil Carbon Stabilization in Black Spruce Forests of Interior Alaska: Soil Temperature, Soil Water, and Wildfire
and Overview: The likely direction of change in soil organic carbon (SOC) in the boreal forest biome, which harbors roughly 22% of the global soil carbon pool, is of marked concern because climate warming is projected to be greatest in high latitudes and temperature is the cardinal determinant of soil C mineralization. Moreover, the majority of boreal forest SOC is harbored in surficial organic...
متن کامل