Interactions of 6-gingerol and ellagic acid with the cardiac sarcoplasmic reticulum Ca2+-ATPase.
نویسندگان
چکیده
The inotropic/lusitropic effects of beta-adrenergic agonists on the heart are mediated largely by protein kinase A (PKA)-catalyzed phosphorylation of phospholamban, the natural protein regulator of the Ca2+ pump present in sarcoplasmic reticulum (SR) membranes. Gingerol, a plant derivative, is known to produce similar effects when tested in isolated cardiac muscle. The purpose of the present study was to compare the effects of gingerol and another plant derivative, ellagic acid, on the kinetics of the SR Ca2+ pump with those of PKA-catalyzed phospholamban phosphorylation to elucidate their mechanisms of Ca2+ pump regulation. As previously demonstrated for PKA, 50 microM gingerol or ellagic acid increased Vmax(Ca) of Ca2+ uptake and Ca2+-ATPase activity assayed at millimolar ATP concentrations in light cardiac SR vesicles. Unlike PKA, which decreases Km(Ca), neither compound had a significant effect on Km(Ca) in unphosphorylated vesicles. However, gingerol increased Km(Ca) in phosphorylated vesicles, in which Ca2+ uptake was significantly increased further at saturating Ca2+ and remained unchanged at subsaturating Ca2+. An inhibition of Ca2+ uptake by gingerol at micromolar MgATP concentrations was overcome with increasing MgATP concentrations. The stimulation of Ca2+ uptake attributable to gingerol in unphosphorylated microsomes at saturating Ca2+ was 30% to 40% when assayed at 0.05 to 2 mM MgATP and only about 12% in phosphorylated microsomes as well as in rabbit fast skeletal muscle light SR. The present results support the view that an ATP-dependent increase in Vmax(Ca) of the SR Ca2+ pump plays an important role in mediating cardiac contractile responses to gingerol and phospholamban-dependent beta-adrenergic stimulation.
منابع مشابه
Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum.
The mycotoxin, cyclopiazonic acid (CPA), inhibits the Ca2+-stimulated ATPase (EC 3.6.1.38) and Ca2+ transport activity of sarcoplasmic reticulum (Goeger, D. E., Riley, R. T., Dorner, J. W., and Cole, R. J. (1988) Biochem. Pharmacol. 37, 978-981). We found that at low ATP concentrations (0.5-2 microM) the inhibition of ATPase activity was essentially complete at a CPA concentration of 6-8 nmol/m...
متن کاملThe effect of pH on the transient-state kinetics of Ca2+-Mg2+-ATPase of cardiac sarcoplasmic reticulum. A comparison with skeletal sarcoplasmic reticulum.
The effect of pH on the Ca2+-Mg2+-dependent ATPase of sarcoplasmic reticulum (SR) was investigated with a rapid mixing quench-flow apparatus capable of measuring phosphorylation and dephosphorylation at times as rapid as 4 msec. The rates of formation and decomposition of the phosphorylated intermediate (E approximately P) of the Ca2+-Mg2+-ATPase were studied in the pH range between 7.6 and 6.0...
متن کاملSmooth muscle expresses a cardiac/slow muscle isoform of the Ca2+-transport ATPase in its endoplasmic reticulum.
Smooth muscle expresses in its endoplasmic reticulum an isoform of the Ca2+-transport ATPase that is very similar to or identical with that of the cardiac-muscle/slow-twitch skeletal-muscle form. However, this enzyme differs from that found in fast-twitch skeletal muscle. This conclusion is based on two independent sets of observations, namely immunological observations and phosphorylation expe...
متن کاملMolecular mechanism of regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum. Effects of synthetic phospholamban peptides on Ca2+ pump ATPase.
The molecular mechanism of the regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum was examined using synthetic peptides of phospholamban and purified Ca2+ pump ATPase from cardiac sarcoplasmic reticulum. The phospholamban monomer of 52 amino acid residues contains two distinct domains, the cytoplasmic (amino acids 1-30) and the transmembrane (amino acids 31-52) do...
متن کاملSeparation of Vesicles of Cardiac Sarcolemma from Vesicles of Cardiac Sarcoplasmic Reticulum
Sarcolemmal and sarcoplasmic reticulum membrane vesicle fractions were isolated from cardiac microsomes. Separation of sarcolemmal and sarcoplasmic reticulum membrane markers was documented by a combination of correlative assay and centrifugation techniques. To facilitate the separation, the crude microsomes were incubated in the presence of ATP, Ca2’, and oxalate to increase the density of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 290 1 شماره
صفحات -
تاریخ انتشار 1999