Compact Representation of Sets of Binary Constraints

نویسنده

  • Jussi Rintanen
چکیده

We address the problem of representing big sets of binary constraints compactly. Binary constraints in the form of 2literal clauses are ubiquitous in propositional formulae that represent real-world problems ranging from model-checking problems in computer-aided verification to AI planning problems. Current satisfiability and constraint solvers are applicable to very big problems, and in some cases the physical size of the problem representations prevents solving the problems, not their computational difficulty. Our work is motivated by this observation. We propose graph-theoretic techniques based on cliques and bicliques for compactly representing big sets of binary constraints that have the form of 2-literal clauses. An n, m biclique in a graph associated with the constraints can be very compactly represented with only n + m binary constraints and one auxiliary variable. Cliques in the graph are associated with at-most-one constraints, and can be represented with a logarithmic number of binary constraints. The clique representation turns out to be a special case of the biclique representation. We demonstrate the effectiveness of the biclique representation in making the representation of big planning problems practical.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Algorithm for Network Reliability Evaluation

Binary Decision Diagram (BDD) is a data structure proved to be compact in representation and efficient in manipulation of Boolean formulas. Using Binary decision diagram in network reliability analysis has already been investigated by some researchers. In this paper we show how an exact algorithm for network reliability can be improved and implemented efficiently by using CUDD - Colorado Univer...

متن کامل

An Automata - Theoretic Approach toPresburger Arithmetic Constraints

This paper introduces a nite-automata based representation of Presburger arithmetic deenable sets of integer vectors. The representation consists of concurrent automata operating on the binary en-codings of the elements of the represented sets. This representation has several advantages. First, being automata-based it is operational in nature and hence leads directly to algorithms, for instance...

متن کامل

?-Independent and Dissociate Sets on Compact Commutative Strong Hypergroups

In this paper we define ?-independent (a weak-version of independence), Kronecker and dissociate sets on hypergroups and study their properties and relationships among them and some other thin sets such as independent and Sidon sets. These sets have the lacunarity or thinness property and are very useful indeed. For example Varopoulos used the Kronecker sets to prove the Malliavin theorem. In t...

متن کامل

An Automata-Theoretic Approach to Presburger Arithmetic Constraints (Extended Abstract)

This paper introduces a finite-automata based representation of Presburger arithmetic definable sets of integer vectors. The representation consists of concurrent automata operating on the binary encodings of the elements of the represented sets. This representation has several advantages. First, being automata-based it is operational in nature and hence leads directly to algorithms, for instan...

متن کامل

COUNTABLE COMPACTNESS AND THE LINDEL¨OF PROPERTY OF L-FUZZY SETS

In this paper, countable compactness and the Lindel¨of propertyare defined for L-fuzzy sets, where L is a complete de Morgan algebra. Theydon’t rely on the structure of the basis lattice L and no distributivity is requiredin L. A fuzzy compact L-set is countably compact and has the Lindel¨ofproperty. An L-set having the Lindel¨of property is countably compact if andonly if it is fuzzy compact. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006