Continuum electrostatics for ionic solutions with non-uniform ionic sizes

نویسندگان

  • Bo Li
  • B Li
چکیده

This work concerns electrostatic properties of an ionic solution with multiple ionic species of possibly different ionic sizes. Such properties are described by the minimization of an electrostatic free-energy functional of ionic concentrations. Bounds are obtained for ionic concentrations with low electrostatic free energies. Such bounds are used to show that there exists a unique set of equilibrium ionic concentrations that minimizes the free-energy functional. The equilibrium ionic concentrations are found to depend sorely on the equilibrium electrostatic potential, resembling the classical Boltzmann distributions that relate the equilibrium ionic concentrations to the equilibrium electrostatic potential. Unless all the ionic and solvent molecular sizes are assumed to be the same, explicit formulae of such dependence are, however, not available in general. It is nevertheless proved that in equilibrium the ionic charge density is a decreasing function of the electrostatic potential. This determines a variational principle with a convex functional for the electrostatic potential. Mathematics Subject Classification: 35J20, 35J60, 49S05, 81V55, 92E99

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean-field description of ionic size effects with nonuniform ionic sizes: a numerical approach.

Ionic size effects are significant in many biological systems. Mean-field descriptions of such effects can be efficient but also challenging. When ionic sizes are different, explicit formulas in such descriptions are not available for the dependence of the ionic concentrations on the electrostatic potential, that is, there is no explicit Boltzmann-type distributions. This work begins with a var...

متن کامل

Biomolecular Electrostatics Simulation by an FMM-based BEM on 512 GPUs

We present simulations of biomolecular electrostatics at a scale not reached before, thanks to both algorithmic and hardware acceleration. The algorithmic acceleration is achieved with the fast multipole method (FMM) in conjunction with a boundary element method (BEM) formulation of the continuum electrostatic model. The hardware acceleration is achieved through graphics processors, GPUs. We de...

متن کامل

Analysis of a Nonlocal Poisson-Boltzmann Equation

A nonlinear, nonlocal dielectric continuum model, called the nonlocal modified PoissonBoltzmann equation (NMPBE), has been proposed to reflect the spatial-frequency dependence of dielectric permittivity in the calculation of electrostatics of ionic-solvated biomolecules. However, its analysis is difficult due to its definition involving Dirac delta distributions for modeling point charges, expo...

متن کامل

Growth of linear charged micelles.

The electrostatics of micellar growth is reviewed and extended for solutions containing excess salt. In dilute solution the expansion of a linear micelle with increasing salt concentration is explained for a wide range of ionic strength. When the micellar charge density is very high, counterions condense nonuniformly onto the micellar rod. In that case the micelle may contract upon the addition...

متن کامل

Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II: size effects on ionic distributions and diffusion-reaction rates.

The effects of finite particle size on electrostatics, density profiles, and diffusion have been a long existing topic in the study of ionic solution. The previous size-modified Poisson-Boltzmann and Poisson-Nernst-Planck models are revisited in this article. In contrast to many previous works that can only treat particle species with a single uniform size or two sizes, we generalize the Borukh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009