UvA - DARE ( Digital Academic Repository ) Some remarks on very - well - poised 87 series

نویسنده

  • Jasper V. STOKMAN
چکیده

Nonpolynomial basic hypergeometric eigenfunctions of the Askey–Wilson second order difference operator are known to be expressible as very-well-poised 8φ7 series. In this paper we use this fact to derive various basic hypergeometric and theta function identities. We relate most of them to identities from the existing literature on basic hypergeometric series. This leads for example to a new derivation of a known quadratic transformation formula for very-well-poised 8φ7 series. We also provide a link to Chalykh’s theory on (rank one, BC type) Baker–Akhiezer functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UvA - DARE ( Digital Academic Repository ) The University of Amsterdam at WebCLEF 2005

We describe the University of Amsterdam’s participation in the WebCLEF track at CLEF 2005. We submitted runs for both the mixed monolingual task and the multilingual task.

متن کامل

UvA - DARE ( Digital Academic Repository ) Not

With this paper I aim to demonstrate that a look beyond the Aristotelian square of opposition, and a related non-conservative view on logical determiners, contributes to both the understanding of Aristotelian syllogistics as well as to the study of quantificational structures in natural language.

متن کامل

UvA - DARE ( Digital Academic Repository ) Not Only

With this paper I aim to demonstrate that a look beyond the Aristotelian square of opposition, and a related non-conservative view on logical determiners, contributes to both the understanding of Aristotelian syllogistics as well as to the study of quantificational structures in natural language.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017