Simplification Methods for Sum-of-Squares Programs
نویسندگان
چکیده
A sum-of-squares is a polynomial that can be expressed as a sum of squares of other polynomials. Determining if a sum-of-squares decomposition exists for a given polynomial is equivalent to a linear matrix inequality feasibility problem. The computation required to solve the feasibility problem depends on the number of monomials used in the decomposition. The Newton polytope is a method to prune unnecessary monomials from the decomposition. This method requires the construction of a convex hull and this can be time consuming for polynomials with many terms. This paper presents a new algorithm for removing monomials based on a simple property of positive semidefinite matrices. It returns a set of monomials that is never larger than the set returned by the Newton polytope method and, for some polynomials, is a strictly smaller set. Moreover, the algorithm takes significantly less computation than the convex hull construction. This algorithm is then extended to a more general simplification method for sum-ofsquares programming.
منابع مشابه
An Incremental DC Algorithm for the Minimum Sum-of-Squares Clustering
Here, an algorithm is presented for solving the minimum sum-of-squares clustering problems using their difference of convex representations. The proposed algorithm is based on an incremental approach and applies the well known DC algorithm at each iteration. The proposed algorithm is tested and compared with other clustering algorithms using large real world data sets.
متن کاملIntroducing SOSTOOLS: A General Purpose Sum of Squares Programming Solver
SOSTOOLS is a MATLAB toolbox for constructing and solving sum of squares programs. It can be used in combination with semidefinite programming software, such as SeDuMi, to solve many continuous and combinatorial optimization problems, as well as various control-related problems. This paper provides an overview on sum of squares programming, describes the primary features of SOSTOOLS, and shows ...
متن کاملExact Conic Programming Relaxations for a Class of Convex Polynomial Cone Programs
In this paper, under a suitable regularity condition, we establish that a broad class of conic convex polynomial optimization problems, called conic sum-of-squares convex polynomial programs, exhibits exact conic programming relaxation, which can be solved by various numerical methods such as interior point methods. By considering a general convex cone-program, we give unified results that appl...
متن کاملBlock diagonalization of matrix-valued sum-of-squares programs
Checking non-negativity of polynomials using sum-of-squares has recently been popularized and found many applications in control. Although the method is based on convex programming, the optimization problems rapidly grow and result in huge semidefinite programs. The paper [4] describes how symmetry is exploited in sum-of-squares problems in the MATLAB toolbox YALMIP, but concentrates on the sca...
متن کاملNCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials
NCSOStools is a Matlab toolbox for • symbolic computation with polynomials in noncommuting variables; • constructing and solving sum of hermitian squares (with commutators) programs for polynomials in noncommuting variables. It can be used in combination with semidefinite programming software, such as SeDuMi, SDPA or SDPT3 to solve these constructed programs. This paper provides an overview of ...
متن کامل