Persistent Neural States: Stationary Localized Activity Patterns in Nonlinear Continuous n-Population, q-Dimensional Neural Networks
نویسندگان
چکیده
Neural continuum networks are an important aspect of the modeling of macroscopic parts of the cortex. Two classes of such networks are considered: voltage and activity based. In both cases, our networks contain an arbitrary number, n, of interacting neuron populations. Spatial nonsymmetric connectivity functions represent cortico-cortical, local connections, and external inputs represent nonlocal connections. Sigmoidal nonlinearities model the relationship between (average) membrane potential and activity. Departing from most of the previous work in this area, we do not assume the nonlinearity to be singular, that is, represented by the discontinuous Heaviside function. Another important difference from previous work is that we relax the assumption that the domain of definition where we study these networks is infinite, that is, equal to R or R2. We explicitly consider the biologically more relevant case of a bounded subset omega of Rq, q = 1, 2, 3, a better model of a piece of cortex. The time behavior of these networks is described by systems of integro-differential equations. Using methods of functional analysis, we study the existence and uniqueness of a stationary (i.e., time-independent) solution of these equations in the case of a stationary input. These solutions can be seen as 'persistent'; they are also sometimes called bumps. We show that under very mild assumptions on the connectivity functions and because we do not use the Heaviside function for the nonlinearities, such solutions always exist. We also give sufficient conditions on the connectivity functions for the solution to be absolutely stable, that is, independent of the initial state of the network. We then study the sensitivity of the solutions to variations of such parameters as the connectivity functions, the sigmoids, the external inputs, and, last but not least, the shape of the domain of existence omega of the neural continuum networks. These theoretical results are illustrated and corroborated by a large number of numerical experiments in most of the cases 2 < or = n < or = 3, 2 < or = q < or = 3.
منابع مشابه
Dynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks
Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملSisyphus effect in pulse-coupled excitatory neural networks with spike-timing-dependent plasticity.
The collective dynamics of excitatory pulse-coupled neural networks with spike-timing-dependent plasticity (STDP) is studied. Depending on the model parameters stationary states characterized by high or low synchronization can be observed. In particular, at the transition between these two regimes, persistent irregular low frequency oscillations between strongly and weakly synchronized states a...
متن کاملComparison Study on Neural Networks in Damage Detection of Steel Truss Bridge
This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear n...
متن کاملHow the brain keeps the eyes still.
The brain can hold the eyes still because it stores a memory of eye position. The brain's memory of horizontal eye position appears to be represented by persistent neural activity in a network known as the neural integrator, which is localized in the brainstem and cerebellum. Existing experimental data are reinterpreted as evidence for an "attractor hypothesis" that the persistent patterns of a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 21 1 شماره
صفحات -
تاریخ انتشار 2009