Operant conditioning of rat soleus H-reflex oppositely affects another H-reflex and changes locomotor kinematics.

نویسندگان

  • Yi Chen
  • Lu Chen
  • Yu Wang
  • Jonathan R Wolpaw
  • Xiang Yang Chen
چکیده

H-reflex conditioning is a model for studying the plasticity associated with a new motor skill. We are exploring its effects on other reflexes and on locomotion. Rats were implanted with EMG electrodes in both solei (SOL(R) and SOL(L)) and right quadriceps (QD(R)), and stimulating cuffs on both posterior tibial (PT) nerves and right posterior femoral nerve. When SOL(R) EMG remained in a defined range, PT(R) stimulation just above M-response threshold elicited the SOL(R) H-reflex. Analogous procedures elicited the QD(R) and SOL(L) H-reflexes. After a control period, each rat was exposed for 50 d to a protocol that rewarded SOL(R) H-reflexes that were above (HRup rats) or below (HRdown rats) a criterion. HRup conditioning increased the SOL(R) H-reflex to 214 ± 37% (mean ± SEM) of control (p = 0.02) and decreased the QD(R) H-reflex to 71 ± 26% (p = 0.06). HRdown conditioning decreased the SOL(R) H-reflex to 69 ± 2% (p < 0.001) and increased the QD(R) H-reflex to 121 ± 7% (p = 0.02). These changes remained during locomotion. The SOL(L) H-reflex did not change. During the stance phase of locomotion, ankle plantarflexion increased in HRup rats and decreased in HRdown rats, hip extension did the opposite, and hip height did not change. The plasticity that changes the QD(R) H-reflex and locomotor kinematics may be inevitable (i.e., reactive) due to the ubiquity of activity-dependent CNS plasticity, and/or necessary (i.e., compensatory) to preserve other behaviors (e.g., locomotion) that would otherwise be disturbed by the change in the SOL(R) H-reflex pathway. The changes in joint angles, coupled with the preservation of hip height, suggest that compensatory plasticity did occur.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operant conditioning of the soleus H-reflex does not induce long-term changes in the gastrocnemius H-reflexes and does not disturb normal locomotion in humans.

In normal animals, operant conditioning of the spinal stretch reflex or the H-reflex has lesser effects on synergist muscle reflexes. In rats and people with incomplete spinal cord injury (SCI), soleus H-reflex operant conditioning can improve locomotion. We studied in normal humans the impact of soleus H-reflex down-conditioning on medial (MG) and lateral gastrocnemius (LG) H-reflexes and on l...

متن کامل

Operant conditioning of reciprocal inhibition in rat soleus muscle.

Operant conditioning of the H-reflex, the electrical analog of the spinal stretch reflex (SSR), induces activity-dependent plasticity in the spinal cord and might be used to improve locomotion after spinal cord injury. To further assess the potential clinical significance of spinal reflex conditioning, this study asks whether another well-defined spinal reflex pathway, the disynaptic pathway un...

متن کامل

Operant conditioning of H-reflex in freely moving rats.

1. Primates can increase or decrease the spinal stretch reflex and its electrical analogue, the H-reflex (HR), in response to an operant conditioning task. This conditioning changes the spinal cord itself and thereby provides an experimental model for defining the processes and substrates of a learned change in behavior. Because the phenomenon has been demonstrated only in primates, its general...

متن کامل

Locomotor impact of beneficial or nonbeneficial H-reflex conditioning after spinal cord injury.

When new motor learning changes neurons and synapses in the spinal cord, it may affect previously learned behaviors that depend on the same spinal neurons and synapses. To explore these effects, we used operant conditioning to strengthen or weaken the right soleus H-reflex pathway in rats in which a right spinal cord contusion had impaired locomotion. When up-conditioning increased the H-reflex...

متن کامل

Effects of H-reflex up-conditioning on GABAergic terminals on rat soleus motoneurons.

To explore the role of spinal cord plasticity in motor learning, we evaluated the effects of H-reflex operant conditioning on GABAergic input to rat spinal motoneurons. Previous work indicated that down-conditioning of soleus H-reflex increases GABAergic input to soleus motoneurons. This study explored the effect of H-reflex up-conditioning on GABAergic input. Of nine rats exposed to H-reflex u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 31  شماره 

صفحات  -

تاریخ انتشار 2011