Independent restricted domination and the line digraph
نویسندگان
چکیده
Let H be a digraph possibly with loops and let D be a digraph whose arcs are colored with the vertices of H (an H-colored digraph). A walk (path) P in D will be called an H-restricted walk (path) if the colors displayed on the arcs of P form a walk in H. An H-restricted kernel N is a set of vertices of D such that for every two different vertices in N there is no H-restricted path in D joining them, and for every x in V (D) − N there exists an H-restricted path in D from x to N . For the line digraph of D we consider its inner arc-coloration, defined as follows: If h is an arc of D with color c then any arc of the form (x, h) in L(D) also has color c. We prove that the number of H-restricted kernels in an H-colored digraph is equal to the number of H-restricted kernels in the inner coloration of its line digraph.
منابع مشابه
The Roman domination and domatic numbers of a digraph
A Roman dominating function (RDF) on a digraph $D$ is a function $f: V(D)rightarrow {0,1,2}$ satisfying the condition that every vertex $v$ with $f(v)=0$ has an in-neighbor $u$ with $f(u)=2$. The weight of an RDF $f$ is the value $sum_{vin V(D)}f(v)$. The Roman domination number of a digraph $D$ is the minimum weight of an RDF on $D$. A set ${f_1,f_2,dots,f_d}$ of Roman dominating functions on ...
متن کاملA note on the Roman domatic number of a digraph
Roman dominating function} on a digraph $D$ with vertex set $V(D)$ is a labeling$fcolon V(D)to {0, 1, 2}$such that every vertex with label $0$ has an in-neighbor with label $2$. A set ${f_1,f_2,ldots,f_d}$ ofRoman dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vin V(D)$,is called a {em Roman dominating family} (of functions) on $D$....
متن کاملRestricted domination in arc-colored digraphs
Let H = (V (H), A(H)) be a digraph possibly with loops and D = (V (D), A(D)) a digraph whose arcs are colored with the vertices of H (this is what we call an H-colored digraph); i.e. there exists a function c : A(D) → V (H); for an arc of D, f = (u, v) ∈ A(D), we call c(f) = c(u, v) the color of f . A directed walk (directed path) P = (u0, u1, . . . , un) in D will be called an H-walk (H-path) ...
متن کاملThe Italian domatic number of a digraph
An {em Italian dominating function} on a digraph $D$ with vertex set $V(D)$ is defined as a function$fcolon V(D)to {0, 1, 2}$ such that every vertex $vin V(D)$ with $f(v)=0$ has at least two in-neighborsassigned 1 under $f$ or one in-neighbor $w$ with $f(w)=2$. A set ${f_1,f_2,ldots,f_d}$ of distinctItalian dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vi...
متن کاملDominance in a Cayley digraph and in its reverse
Let D be a digraph. Its reverse digraph, D−1, is obtained by reversing all arcs of D. We show that the domination numbers of D and D−1 can be different if D is a Cayley digraph. The smallest groups admitting Cayley digraphs with this property are the alternating group A4 and the dihedral group D6, both on 12 elements. Then, for each n ≥ 6 we find a Cayley digraph D on the dihedral group Dn such...
متن کامل